
Multiple Regression &
Interactions



With 1 predictor
Intercept

Continuous: The mean value of Y (outcome) when X (predictor) is 0

Categorical: The mean value of Y (outcome) when X (predictor) is 0, except

one of your groups is coded as 0. So it's the mean value of Y for the group

coded as 0.

Regression Coefficient

Continuous: A 1-unit change in X predicts a  change in Y

Categorical: A 1-unit change in X predicts a  change in Y, except a 1-unit

change is going from the category coded as 0 to the category coded as 1

Omnibus test

How well does the model fit the data?

-test,  etc.

b1
b1

F R2
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Multiple Regression
Now we are going to add in more variables

Maybe you have a covariate you want to control for

Maybe you want to look at the effects of X and Z on Y...independently
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Multiple Regression with Continuous Predictors

Intercept is the value of  when all predictors = 0

Regression coefficients are the predicted change in  for a 1 unit change in ,

holding all other predictors constant

Residual in simple regression can be thought of as a measure of  that is left

over after accounting for your DV

Ŷ = b0 + b1X1 + b2X2 +⋯+ bkXk

Y

Y X

Y

4 / 69



library(here)

stress.data = read.csv(here::here("R", "stress.csv"))

library(psych)

describe(stress.data$Stress)

##    vars   n mean   sd median trimmed  mad  min   max range skew kurtosis   s

## X1    1 118 5.18 1.88   5.27    5.17 1.65 0.62 10.32  9.71 0.08     0.22 0.
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Example

mr.model <- lm(Stress ~ Support + Anxiety, data = stress.data)

summary(mr.model)

## 

## Call:

## lm(formula = Stress ~ Support + Anxiety, data = stress.data)

## 

## Residuals:

##     Min      1Q  Median      3Q     Max 

## -4.1958 -0.8994 -0.1370  0.9990  3.6995 

## 

## Coefficients:

##             Estimate Std. Error t value Pr(>|t|)    

## (Intercept) -0.31587    0.85596  -0.369 0.712792    

## Support      0.40618    0.05115   7.941 1.49e-12 ***

## Anxiety      0.25609    0.06740   3.799 0.000234 ***

## ---

## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

## 

## Residual standard error: 1.519 on 115 degrees of freedom

## Multiple R-squared:  0.3556,    Adjusted R-squared:  0.3444 

## F-statistic: 31.73 on 2 and 115 DF,  p-value: 1.062e-11 6 / 69



Visualizing multiple regression

library(visreg)

visreg2d(mr.model,"Support", "Anxiety", plot.type = "persp")
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mr.model <- lm(Stress ~ Support + Anxiety, data = stress.data)

summary(mr.model)

## 

## Call:

## lm(formula = Stress ~ Support + Anxiety, data = stress.data)

## 

## Residuals:

##     Min      1Q  Median      3Q     Max 

## -4.1958 -0.8994 -0.1370  0.9990  3.6995 

## 

## Coefficients:

##             Estimate Std. Error t value Pr(>|t|)    

## (Intercept) -0.31587    0.85596  -0.369 0.712792    

## Support      0.40618    0.05115   7.941 1.49e-12 ***

## Anxiety      0.25609    0.06740   3.799 0.000234 ***

## ---

## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

## 

## Residual standard error: 1.519 on 115 degrees of freedom

## Multiple R-squared:  0.3556,    Adjusted R-squared:  0.3444 

## F-statistic: 31.73 on 2 and 115 DF,  p-value: 1.062e-11
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mr.model <- lm(Stress ~ Support + Anxiety, data = stress.data)

summary(mr.model)

## 

## Call:

## lm(formula = Stress ~ Support + Anxiety, data = stress.data)

## 

## Residuals:

##     Min      1Q  Median      3Q     Max 

## -4.1958 -0.8994 -0.1370  0.9990  3.6995 

## 

## Coefficients:

##             Estimate Std. Error t value Pr(>|t|)    

## (Intercept) -0.31587    0.85596  -0.369 0.712792    

## Support      0.40618    0.05115   7.941 1.49e-12 ***

## Anxiety      0.25609    0.06740   3.799 0.000234 ***

## ---

## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

## 

## Residual standard error: 1.519 on 115 degrees of freedom

## Multiple R-squared:  0.3556,    Adjusted R-squared:  0.3444 

## F-statistic: 31.73 on 2 and 115 DF,  p-value: 1.062e-11
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"Controlling for"

Taken from @nickchk 10 / 69

https://twitter.com/nickchk/status/1068215492458905600


Estimating model fit

mr.model <- lm(Stress ~ Support + Anxiety, data = stress.data)

summary(mr.model)

## 

## Call:

## lm(formula = Stress ~ Support + Anxiety, data = stress.data)

## 

## Residuals:

##     Min      1Q  Median      3Q     Max 

## -4.1958 -0.8994 -0.1370  0.9990  3.6995 

## 

## Coefficients:

##             Estimate Std. Error t value Pr(>|t|)    

## (Intercept) -0.31587    0.85596  -0.369 0.712792    

## Support      0.40618    0.05115   7.941 1.49e-12 ***

## Anxiety      0.25609    0.06740   3.799 0.000234 ***

## ---

## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

## 

## Residual standard error: 1.519 on 115 degrees of freedom

## Multiple R-squared:  0.3556,    Adjusted R-squared:  0.3444 

## F-statistic: 31.73 on 2 and 115 DF,  p-value: 1.062e-11 11 / 69



R-squared, 
Same interpretation as before

Adding predictors into your model will increase  – regardless of whether or

not the predictor is significantly correlated with Y.

Adjusted/Shrunken  takes into account the number of predictors in your

model

R2

R2

R2
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Categorical predictors
One of the benefits of using regression is that it can handle both continuous and

categorical predictors and allows for using both in the same model.

Categorical predictors with more than two levels are broken up into several smaller

variables. In doing so, we take variables that don't have any inherent numerical

value to them (i.e., nominal and ordinal variables) and ascribe meaningful

numbers that allow for us to calculate meaningful statistics.

You can choose just about any numbers to represent your categorical variable.

However, there are several commonly used methods that result in very useful

statistics.
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Occupation D1 D2

Engineer 0 0

Teacher 1 0

Doctor 0 1

The dummy codes are entered as IV's

in the regression equation.

Person Occupation D1 D2

Billy Engineer 0 0

Susan Teacher 1 0

Michael Teacher 1 0

Molly Engineer 0 0

Katie Doctor 0 1

Dummy coding
In dummy coding, one group is selected to be a reference group. From your single

nominal variable with K levels,  dummy code variables are created; for each

new dummy code variable, one of the non-reference groups is assigned 1; all other

groups are assigned 0.

K − 1
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Example

Solomon’s paradox describes the tendency for people to reason more wisely about

other people’s problems compared to their own. One potential explanation for this

paradox is that people tend to view other people’s problems from a more

psychologically distant perspective, whereas they view their own problems from a

psychologically immersed perspective. To test this possibility, researchers asked

romantically-involved participants to think about a situation in which their partner

cheated on them (self condition) or a friend’s partner cheated on their friend (other

condition). Participants were also instructed to take a first-person perspective

(immersed condition) by using pronouns such as I and me, or a third-person

perspective (distanced condition) by using pronouns such as he and her.

solomon <- read.csv(here::here("R", "solomon.csv"))

Grossmann, I., & Kross, E. (2014). Exploring Solomon’s paradox: Self-distancing eliminates self-other

asymmetry in wise reasoning about close relationships in younger and older adults. Psychological

Science, 25, 1571-1580.
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library(knitr)

library(kableExtra)

library(tidyverse)

head(solomon) %>% 

  select(ID, CONDITION, 

         WISDOM) %>%

  kable() %>% kable_styling()

ID CONDITION WISDOM

1 3 -0.2758939

6 4 0.4294921

8 4 -0.0278587

9 4 0.5327150

10 2 0.6229979

12 2 -1.9957813

psych::describe(solomon[,c("ID", "CONDITION", "WISDOM")], fast = T)

##           vars   n  mean    sd   min    max  range   se

## ID           1 120 64.46 40.98  1.00 168.00 167.00 3.74

## CONDITION    2 120  2.46  1.12  1.00   4.00   3.00 0.10

## WISDOM       3 115  0.01  0.99 -2.52   1.79   4.31 0.09
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solomon = solomon %>%

  mutate(dummy_2 = ifelse(CONDITION == 2, 1, 0),

         dummy_3 = ifelse(CONDITION == 3, 1, 0),

         dummy_4 = ifelse(CONDITION == 4, 1, 0)) 

solomon %>% 

  select(ID, CONDITION, WISDOM,

         matches("dummy")) %>%

  kable() %>% kable_styling()

ID CONDITION WISDOM dummy_2 dummy_3 dummy_4

1 3 -0.2758939 0 1 0

6 4 0.4294921 0 0 1

8 4 -0.0278587 0 0 1

9 4 0.5327150 0 0 1

10 2 0.6229979 1 0 0

12 2 -1.9957813 1 0 0

14 3 -1.1514699 0 1 0

18 2 -0.6912011 1 0 0

21 2 0.0053117 1 0 0

25 4 0.2863499 0 0 1
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mod.1 = lm(WISDOM ~ dummy_2 + dummy_3 + dummy_4, data = solomon)

summary(mod.1)

## 

## Call:

## lm(formula = WISDOM ~ dummy_2 + dummy_3 + dummy_4, data = solomon)

## 

## Residuals:

##     Min      1Q  Median      3Q     Max 

## -2.6809 -0.4209  0.0473  0.6694  2.3499 

## 

## Coefficients:

##             Estimate Std. Error t value Pr(>|t|)    

## (Intercept)  -0.5593     0.1686  -3.317 0.001232 ** 

## dummy_2       0.6814     0.2497   2.729 0.007390 ** 

## dummy_3       0.7541     0.2348   3.211 0.001729 ** 

## dummy_4       0.8938     0.2524   3.541 0.000583 ***

## ---

## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

## 

## Residual standard error: 0.9389 on 111 degrees of freedom

##   (5 observations deleted due to missingness)

## Multiple R-squared:  0.1262,    Adjusted R-squared:  0.1026 

## F-statistic: 5.343 on 3 and 111 DF,  p-value: 0.001783
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Interpreting coefficients

When working with dummy codes, the intercept can be interpreted as the mean of

the reference group.

What do each of the slope coefficients mean?

Ŷ = b0 + b1D2 + b2D3 + b3D2

Ŷ = b0 + b1(0) + b2(0) + b3(0)

Ŷ = b0

Ŷ = Ȳ Reference
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From this equation, we can get the mean of every single group.

newdata = data.frame(dummy_2 = c(0,1,0,0),

                     dummy_3 = c(0,0,1,0),

                     dummy_4 = c(0,0,0,1))

predict(mod.1, newdata = newdata, se.fit = T)

## $fit

##          1          2          3          4 

## -0.5593042  0.1220847  0.1948435  0.3344884 

## 

## $se.fit

##         1         2         3         4 

## 0.1686358 0.1841382 0.1634457 0.1877848 

## 

## $df

## [1] 111

## 

## $residual.scale

## [1] 0.9389242
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From this equation, we can get the mean of every single group.

solomon %>% 

  mutate_at("CONDITION", ~as.factor(.)) %>% 

  group_by(CONDITION) %>% 

  drop_na() %>% 

  summarize(meanWisdom = mean(WISDOM))

## # A tibble: 4 × 2

##   CONDITION meanWisdom

##   <fct>          <dbl>

## 1 1             -0.559

## 2 2              0.122

## 3 3              0.195

## 4 4              0.334
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And the test of the coefficient represents the significance test of each group to the

reference. This is an independent-samples t-test.

The test of the intercept is the one-sample t-test comparing the intercept to 0.

summary(mod.1)$coef

##               Estimate Std. Error   t value     Pr(>|t|)

## (Intercept) -0.5593042  0.1686358 -3.316641 0.0012319438

## dummy_2      0.6813889  0.2496896  2.728944 0.0073896074

## dummy_3      0.7541477  0.2348458  3.211247 0.0017291997

## dummy_4      0.8937927  0.2523909  3.541303 0.0005832526

What if you wanted to compare groups 2 and 3?
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solomon = solomon %>%

  mutate(dummy_1 = ifelse(CONDITION == 1, 1, 0),

         dummy_3 = ifelse(CONDITION == 3, 1, 0),

         dummy_4 = ifelse(CONDITION == 4, 1, 0)) 

mod.2 = lm(WISDOM ~ dummy_1 + dummy_3 + dummy_4, data = solomon)

summary(mod.2)

## 

## Call:

## lm(formula = WISDOM ~ dummy_1 + dummy_3 + dummy_4, data = solomon)

## 

## Residuals:

##     Min      1Q  Median      3Q     Max 

## -2.6809 -0.4209  0.0473  0.6694  2.3499 

## 

## Coefficients:

##             Estimate Std. Error t value Pr(>|t|)   

## (Intercept)  0.12208    0.18414   0.663  0.50870   

## dummy_1     -0.68139    0.24969  -2.729  0.00739 **

## dummy_3      0.07276    0.24621   0.296  0.76816   

## dummy_4      0.21240    0.26300   0.808  0.42104   

## ---

## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

## 

## Residual standard error: 0.9389 on 111 degrees of freedom

##   (5 observations deleted due to missingness)

## Multiple R-squared:  0.1262,    Adjusted R-squared:  0.1026 

## F t ti ti : 5 343 3 d 111 DF l : 0 001783
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solomon = solomon %>% 

  mutate_at("CONDITION", ~as.factor(.))

mod.3 = lm(WISDOM ~ CONDITION, data = solomon)

summary(mod.3)

## 

## Call:

## lm(formula = WISDOM ~ CONDITION, data = solomon)

## 

## Residuals:

##     Min      1Q  Median      3Q     Max 

## -2.6809 -0.4209  0.0473  0.6694  2.3499 

## 

## Coefficients:

##             Estimate Std. Error t value Pr(>|t|)    

## (Intercept)  -0.5593     0.1686  -3.317 0.001232 ** 

## CONDITION2    0.6814     0.2497   2.729 0.007390 ** 

## CONDITION3    0.7541     0.2348   3.211 0.001729 ** 

## CONDITION4    0.8938     0.2524   3.541 0.000583 ***

## ---

## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

## 

## Residual standard error: 0.9389 on 111 degrees of freedom

##   (5 observations deleted due to missingness)

## Multiple R-squared:  0.1262,    Adjusted R-squared:  0.1026 

## F-statistic: 5.343 on 3 and 111 DF,  p-value: 0.001783 24 / 69



Omnibus test

summary(mod.1)

## 

## Call:

## lm(formula = WISDOM ~ dummy_2 + dummy_3 + dummy_4, data = solomon)

## 

## Residuals:

##     Min      1Q  Median      3Q     Max 

## -2.6809 -0.4209  0.0473  0.6694  2.3499 

## 

## Coefficients:

##             Estimate Std. Error t value Pr(>|t|)    

## (Intercept)  -0.5593     0.1686  -3.317 0.001232 ** 

## dummy_2       0.6814     0.2497   2.729 0.007390 ** 

## dummy_3       0.7541     0.2348   3.211 0.001729 ** 

## dummy_4       0.8938     0.2524   3.541 0.000583 ***

## ---

## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

## 

## Residual standard error: 0.9389 on 111 degrees of freedom

##   (5 observations deleted due to missingness)

## Multiple R-squared:  0.1262,    Adjusted R-squared:  0.1026 

## F-statistic: 5.343 on 3 and 111 DF,  p-value: 0.001783 25 / 69



Omnibus test

summary(mod.2)

## 

## Call:

## lm(formula = WISDOM ~ dummy_1 + dummy_3 + dummy_4, data = solomon)

## 

## Residuals:

##     Min      1Q  Median      3Q     Max 

## -2.6809 -0.4209  0.0473  0.6694  2.3499 

## 

## Coefficients:

##             Estimate Std. Error t value Pr(>|t|)   

## (Intercept)  0.12208    0.18414   0.663  0.50870   

## dummy_1     -0.68139    0.24969  -2.729  0.00739 **

## dummy_3      0.07276    0.24621   0.296  0.76816   

## dummy_4      0.21240    0.26300   0.808  0.42104   

## ---

## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

## 

## Residual standard error: 0.9389 on 111 degrees of freedom

##   (5 observations deleted due to missingness)

## Multiple R-squared:  0.1262,    Adjusted R-squared:  0.1026 

## F-statistic: 5.343 on 3 and 111 DF,  p-value: 0.001783 26 / 69



Omnibus test

summary(mod.3)

## 

## Call:

## lm(formula = WISDOM ~ CONDITION, data = solomon)

## 

## Residuals:

##     Min      1Q  Median      3Q     Max 

## -2.6809 -0.4209  0.0473  0.6694  2.3499 

## 

## Coefficients:

##             Estimate Std. Error t value Pr(>|t|)    

## (Intercept)  -0.5593     0.1686  -3.317 0.001232 ** 

## CONDITION2    0.6814     0.2497   2.729 0.007390 ** 

## CONDITION3    0.7541     0.2348   3.211 0.001729 ** 

## CONDITION4    0.8938     0.2524   3.541 0.000583 ***

## ---

## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

## 

## Residual standard error: 0.9389 on 111 degrees of freedom

##   (5 observations deleted due to missingness)

## Multiple R-squared:  0.1262,    Adjusted R-squared:  0.1026 

## F-statistic: 5.343 on 3 and 111 DF,  p-value: 0.001783 27 / 69



Omnibus test

anova(mod.3)

## Analysis of Variance Table

## 

## Response: WISDOM

##            Df Sum Sq Mean Sq F value   Pr(>F)   

## CONDITION   3 14.131  4.7105  5.3432 0.001783 **

## Residuals 111 97.855  0.8816                    

## ---

## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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What are interactions?
When we have two variables, A and B, in a regression model, we are testing

whether these variables have additive effects on our outcome, Y. That is, the

effect of A on Y is constant over all values of B.

Example: Drinking coffee and hours of sleep have additive effects on alertness;

no matter how any hours I slept the previous night, drinking one cup of coffee

will make me .5 SD more awake than not drinking coffee.
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What are interactions?
However, we may hypothesize that two variables have joint effects, or interact

with each other. In this case, the effect of A on Y changes as a function of B.

Example: Chronic stress has a negative impact on health but only for

individuals who receive little or no social support; for individuals with high

social support, chronic stress has no impact on health.

This is also referred to as moderation.
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Univariate regression Multivariate regression
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Multivariate regression with an interaction
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Example

Let's use data about stress. We have an outcome (Stress) that we are interested in

predicting from trait Anxiety and levels of Social Support. We can ignore the group

status for the time being.

library(here)

stress.data = read.csv(here("R/stress.csv"))

library(psych)

describe(stress.data)

##         vars   n   mean     sd median trimmed    mad  min    max  range  ske

## id         1 118 488.65 295.95 462.50  485.76 372.13 2.00 986.00 984.00  0.

## Anxiety    2 118   7.61   2.49   7.75    7.67   2.26 0.70  14.64  13.94 -0.

## Stress     3 118   5.18   1.88   5.27    5.17   1.65 0.62  10.32   9.71  0.0

## Support    4 118   8.73   3.28   8.52    8.66   3.16 0.02  17.34  17.32  0.

## group*     5 118   1.53   0.50   2.00    1.53   0.00 1.00   2.00   1.00 -0.

##         kurtosis    se

## id         -1.29 27.24

## Anxiety     0.28  0.23

## Stress      0.22  0.17

## Support     0.19  0.30

## group*     -2.01  0.05
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In R

i.model1 = lm(Stress ~ Anxiety + Support + Anxiety:Support,

              data = stress.data)

i.model2 = lm(Stress ~ Anxiety*Support, data = stress.data)

Both methods of specifying the interaction above will work in R. Using the * tells R

to create both the main effects and the interaction effect. Note, however that the

following code gives you the wrong results:

imodel_bad = lm(Stress ~ Anxiety:Support,

                data = stress.data)

# This does not create main effects.

# It is VERY WRONG

# Don't do this

34 / 69



i.model1 = lm(Stress ~ Anxiety*Support, data = stress.data)

summary(i.model1)

## 

## Call:

## lm(formula = Stress ~ Anxiety * Support, data = stress.data)

## 

## Residuals:

##     Min      1Q  Median      3Q     Max 

## -3.8163 -1.0783  0.0373  0.9200  3.6109 

## 

## Coefficients:

##                 Estimate Std. Error t value Pr(>|t|)    

## (Intercept)     -2.73966    1.12101  -2.444  0.01606 *  

## Anxiety          0.61561    0.13010   4.732 6.44e-06 ***

## Support          0.66697    0.09547   6.986 2.02e-10 ***

## Anxiety:Support -0.04174    0.01309  -3.188  0.00185 ** 

## ---

## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

## 

## Residual standard error: 1.462 on 114 degrees of freedom

## Multiple R-squared:  0.4084,    Adjusted R-squared:  0.3928 

## F-statistic: 26.23 on 3 and 114 DF,  p-value: 5.645e-13
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All our tidying functions work!

library(broom)

library(knitr)

kable(tidy(i.model1))

term estimate std.error statistic p.value

(Intercept) -2.7396625 1.1210052 -2.443934 0.0160605

Anxiety 0.6156122 0.1301016 4.731780 0.0000064

Support 0.6669669 0.0954746 6.985802 0.0000000

Anxiety:Support -0.0417408 0.0130933 -3.187954 0.0018497
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All our tidying functions work!

kable(head(augment(i.model1)))

Stress Anxiety Support .fitted .resid .hat .sigma .cooksd .st

3.19813 10.18520 6.1602 5.020185 -1.8220554 0.0205374 1.458248 0.0083121 -1.2

7.00840 5.58873 8.9069 4.563653 2.4447470 0.0173247 1.450055 0.0125411 1.6

6.17400 6.58500 10.5433 5.448214 0.7257861 0.0131721 1.466888 0.0008333 0.4

8.69884 8.95430 11.4605 6.133020 2.5658202 0.0379024 1.447732 0.0315283 1.7

5.26707 7.59910 5.5516 3.880245 1.3868246 0.0200085 1.462572 0.0046863 0.9

5.12485 8.15600 7.5117 4.734061 0.3907895 0.0100296 1.468032 0.0001828 0.2
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All our tidying functions work!

kable(glance(i.model1))

r.squared adj.r.squared sigma statistic p.value df logLik AIC BIC

0.4083528 0.3927831 1.462042 26.22746 0 3 -210.2205 430.441 444.2944
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Conceptual interpretation

You can interpret the interaction term in the same way you normally interpret a

slope coefficient -- this is the effect of the interaction controlling for other variables

in the model.

You can also interpret the intercept the same way as before (the expected value of

Y when all predictors are 0).

But here,  is the effect of X on Y when Z is equal to 0.

Ŷ = b0 + b1X + b2Z + b3XZ

b1
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Conceptual interpretation

Lower-order terms change depending on the values of the higher-order terms.

The value of  and  will change depending on the value of .

These values represent "conditional effects" (because the value is conditional

on the level of the other variable). In many cases, the value and significance

test with these terms is either meaningless (if Z is never equal to 0) or

unhelpful, as these values and significance change across the data.

Higher-order terms are those terms that represent interactions.  is a higher-

order term.

This value represents how much the slope of X changes for every 1-unit

increase in Z AND how much the slope of Z changes for everyone 1-unit

increase in X.

Ŷ = b0 + b1X + b2Z + b3XZ

b1 b2 b3

b3
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Conceptual interpretation

Higher-order interaction terms represent:

the change in the slope of X as a function of Z

the degree of curvature in the regression plane

the linear effect of the product of independent variables

stress.data$AxS = stress.data$Anxiety*stress.data$Support

head(stress.data[,c("Anxiety", "Support", "AxS")])

##    Anxiety Support       AxS

## 1 10.18520  6.1602  62.74287

## 2  5.58873  8.9069  49.77826

## 3  6.58500 10.5433  69.42763

## 4  8.95430 11.4605 102.62076

## 5  7.59910  5.5516  42.18716

## 6  8.15600  7.5117  61.26543
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summary(lm(Stress ~ Anxiety + Support + AxS, data = stress.data))

## 

## Call:

## lm(formula = Stress ~ Anxiety + Support + AxS, data = stress.data)

## 

## Residuals:

##     Min      1Q  Median      3Q     Max 

## -3.8163 -1.0783  0.0373  0.9200  3.6109 

## 

## Coefficients:

##             Estimate Std. Error t value Pr(>|t|)    

## (Intercept) -2.73966    1.12101  -2.444  0.01606 *  

## Anxiety      0.61561    0.13010   4.732 6.44e-06 ***

## Support      0.66697    0.09547   6.986 2.02e-10 ***

## AxS         -0.04174    0.01309  -3.188  0.00185 ** 

## ---

## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

## 

## Residual standard error: 1.462 on 114 degrees of freedom

## Multiple R-squared:  0.4084,    Adjusted R-squared:  0.3928 

## F-statistic: 26.23 on 3 and 114 DF,  p-value: 5.645e-13
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summary(lm(Stress ~ Anxiety*Support, data = stress.data))

## 

## Call:

## lm(formula = Stress ~ Anxiety * Support, data = stress.data)

## 

## Residuals:

##     Min      1Q  Median      3Q     Max 

## -3.8163 -1.0783  0.0373  0.9200  3.6109 

## 

## Coefficients:

##                 Estimate Std. Error t value Pr(>|t|)    

## (Intercept)     -2.73966    1.12101  -2.444  0.01606 *  

## Anxiety          0.61561    0.13010   4.732 6.44e-06 ***

## Support          0.66697    0.09547   6.986 2.02e-10 ***

## Anxiety:Support -0.04174    0.01309  -3.188  0.00185 ** 

## ---

## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

## 

## Residual standard error: 1.462 on 114 degrees of freedom

## Multiple R-squared:  0.4084,    Adjusted R-squared:  0.3928 

## F-statistic: 26.23 on 3 and 114 DF,  p-value: 5.645e-13

They're the same!!
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Conditional effects and simple slopes
The regression line estimated in this model is quite difficult to interpret on its own.

A good strategy is to decompose the regression equation into simple slopes,

which are determined by calculating the conditional effects at a specific level of the

moderating variable.

Simple slope: the equation for Y on X at differnt levels of Z; but also refers to

only the coefficient for X in this equation

Conditional effect: the slope coefficients in the full regression model which can

change. These are the lower-order terms associated with a variable. E.g., X has

a conditional effect on Y.

Which variable is the "predictor" (X) and which is the "moderator" (Z)?
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Getting Simple Slopes

The conditional nature of these effects is easiest to see by "plugging in" different

values for one of your variables. Return to the regression equation estimated in

our stress data:

Set Support to 5

Set Support to 10

^Stress = −2.74 + 0.62(Anx) + 0.67(Sup) + −0.04(Anx × Sup)

^Stress = −2.74 + 0.62(Anx) + 0.67(5) + −0.04(Anx × 5)
= −2.74 + 0.62(Anx) + 3.35 + −0.2(Anx)
= 0.61 + 0.42(Anx)

^Stress = −2.74 + 0.62(Anx) + 0.67(10) + −0.04(Anx × 10)
= −2.74 + 0.62(Anx) + 6.7 + −0.4(Anx)
= 3.96 + 0.22(Anx)
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Interaction shapes
Often we graph the simple slopes as a way to understand the interaction.

Interpreting the shape of an interaction can be done using the numbers alone, but

it requires a lot of calculation and mental rotation. For those reasons, consider it a

requirement that you graph interactions in order to interpret them.
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Interaction shapes

Ordinal interactions
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Interaction shapes

Cross-over (disordinal) interactions
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library(sjPlot)

plot_model(imodel, type = "int")
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plot_model(imodel, type = "int", mdrt.values = "meansd")
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plot_model(imodel, type = "pred", terms = c("Support", "Anxiety[5,10]"))
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plot_model(imodel, type = "pred", terms = c("Support", "Anxiety"), mdrt.
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Simple slopes - Significance tests

We want to know whether anxiety is a significant predictor of stress at different

levels of support.

library(reghelper)

simple_slopes(imodel, levels = list(Support = c(4,6,8,10,12)))

##   Anxiety Support Test Estimate Std. Error t value  df  Pr(>|t|) Sig.

## 1  sstest       4        0.4486     0.0886  5.0617 114 1.610e-06  ***

## 2  sstest       6        0.3652     0.0733  4.9791 114 2.289e-06  ***

## 3  sstest       8        0.2817     0.0654  4.3095 114 3.488e-05  ***

## 4  sstest      10        0.1982     0.0674  2.9424 114  0.003946   **

## 5  sstest      12        0.1147     0.0786  1.4600 114  0.147036

If you don't list levels, then this function will test simple slopes at the mean and 1

SD above and below the mean.

^Stress = −2.74 + 0.62(Anx) + 0.67(Sup) + −0.04(Anx × Sup)
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Simple slopes - Significance tests
What if you want to compare slopes to each other? How would we test this?

The test of the interaction coefficient is equivalent to the test of the difference in

slopes at levels of Z separated by 1 unit.

coef(summary(imodel))

##                    Estimate Std. Error   t value     Pr(>|t|)

## (Intercept)     -2.73966246 1.12100519 -2.443934 1.606052e-02

## Anxiety          0.61561220 0.13010161  4.731780 6.435373e-06

## Support          0.66696689 0.09547464  6.985802 2.017698e-10

## Anxiety:Support -0.04174076 0.01309328 -3.187954 1.849736e-03
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Centering
The regression equation built using the raw data is not only diffiuclt to interpret,

but often the terms displayed are not relevant to the hypotheses we're interested.

 is the expected value when all predictors are 0, but this may never happen

in real life

 is the slope of X when Z is equal to 0, but this may not ever happen either.

Centering your variables by subracting the mean from all values can improve the

interpretation of your results.

Remember, a linear transformation does not change associations (correlations)

between variables. In this case, it only changes the interpretation for some

coefficients

b0

b1
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Centering

stress.data = stress.data %>%

  mutate(Anxiety.c = Anxiety - mean(Anxiety),

         Support.c = Support - mean(Support))

head(stress.data[,c("Anxiety", "Anxiety.c", "Support", "Support.c")])

##    Anxiety   Anxiety.c Support  Support.c

## 1 10.18520  2.57086873  6.1602 -2.5697997

## 2  5.58873 -2.02560127  8.9069  0.1769003

## 3  6.58500 -1.02933127 10.5433  1.8133003

## 4  8.95430  1.33996873 11.4605  2.7305003

## 5  7.59910 -0.01523127  5.5516 -3.1783997

## 6  8.15600  0.54166873  7.5117 -1.2182997

DO NOT CENTER YOUR DEPENDENT VARIABLE (Y; STRESS)
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summary(lm(Stress ~ Anxiety.c*Support.c, data = stress.data))

## 

## Call:

## lm(formula = Stress ~ Anxiety.c * Support.c, data = stress.data)

## 

## Residuals:

##     Min      1Q  Median      3Q     Max 

## -3.8163 -1.0783  0.0373  0.9200  3.6109 

## 

## Coefficients:

##                     Estimate Std. Error t value Pr(>|t|)    

## (Intercept)          4.99580    0.14647  34.108  < 2e-16 ***

## Anxiety.c            0.25122    0.06489   3.872 0.000181 ***

## Support.c            0.34914    0.05238   6.666 9.82e-10 ***

## Anxiety.c:Support.c -0.04174    0.01309  -3.188 0.001850 ** 

## ---

## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

## 

## Residual standard error: 1.462 on 114 degrees of freedom

## Multiple R-squared:  0.4084,    Adjusted R-squared:  0.3928 

## F-statistic: 26.23 on 3 and 114 DF,  p-value: 5.645e-13
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summary(imodel)

## 

## Call:

## lm(formula = Stress ~ Anxiety * Support, data = stress.data)

## 

## Residuals:

##     Min      1Q  Median      3Q     Max 

## -3.8163 -1.0783  0.0373  0.9200  3.6109 

## 

## Coefficients:

##                 Estimate Std. Error t value Pr(>|t|)    

## (Intercept)     -2.73966    1.12101  -2.444  0.01606 *  

## Anxiety          0.61561    0.13010   4.732 6.44e-06 ***

## Support          0.66697    0.09547   6.986 2.02e-10 ***

## Anxiety:Support -0.04174    0.01309  -3.188  0.00185 ** 

## ---

## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

## 

## Residual standard error: 1.462 on 114 degrees of freedom

## Multiple R-squared:  0.4084,    Adjusted R-squared:  0.3928 

## F-statistic: 26.23 on 3 and 114 DF,  p-value: 5.645e-13

What changed? What stayed the same?
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This is OK

Y ~ z(X) + z(Z) + z(X)*z(Z)

Y ~ z(X)*z(Z)

This is not OK

Y ~ z(X) + z(Z) + z(X*Z)

Standardized regression equation
So far, we've only discussed the unstandardized regression equation. If you're

interested in getting the standardized regression equation, you can follow the

same procedure of standardizing your variables first and then entering them into

your linear model.

An important note: You must take the product of the Z-scores, not the Z-score of

the products to get the correct regression model.
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Extensions of Interactions
Interactions are all over the place and we can extend these concetps out:

Mixing continuous & categorical variables. "does the slop of x & y change

between group 1 and group 2?"

Polynomials are also interactions
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Mixing categorical and continuous
Consider the case where D is a variable representing two groups. In a univariate

regression, how do we interpret the coefficient for D?

 is the mean of the reference group, and D represents the difference in means

between the two groups.

Ŷ = b0 + b1D

b0
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Interpreting slopes
Extending this to the multivariate case, where X is continuous and D is a dummy

code representing two groups.

How do we interpret 

 is the difference in means between the two groups if the two groups have the

same average level of X or holding X constant.

This, by the way, is ANCOVA.

Ŷ = b0 + b1D+ b2X

b1?

b1
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Visualizing
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Visualizing
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Visualizing
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Interactions
Now extend this example to include joint effects, not just additive effects:

How do we interpret 

 is the difference in means between the two groups when X is 0.

What is the interpretation of ?

 is the slope of X among the reference group.

What is the interpretation of 

 is the difference in slopes between the reference group and the other group.

Ŷ = b0 + b1D+ b2X + b3DX

b1?

b1

b2

b2

b3?

b3
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Visualizing
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Polynomial Regression
Polynomial regression (nonlinear) is most often a form of hierearchical regression

that systematically tests a series of higher order functions for a single variable.

Linear: Ŷ = b0 + b1X

Quadtratic: Ŷ = b0 + b1X + b2X
2

Cubic: Ŷ = b0 + b1X + b2X
2 + b3X

3
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You need 16x the sample size to
detect an interaction as you need
for a main effect of the same size
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