
Making Your Own Functions

Recap
Functions are the verbs of programming languages

They perform actions on objects

We can adjust how the function performs by modifying arguments

arguments are like adverbs

ex: na.rm = TRUE, paired = TRUE, method = "spearman"

2 / 16

Who -- Who Makes Functions?
R is open source -- this means that anyone anywhere can make packages that

contain functions and publish them

THAT MEANS YOU!! YOU CAN DO THIS, TOO!

3 / 16

When You Should Make A
Function?

You need to do the same thing many times. Make your life easier!

Sounds a lot like a for loop, right?

But functions are particularly helpful when you know you'll need to do

this exact same thing again, especially on a different dataset!

When you write a for loop, you'll write it specific to your dataset. When you

write a function, it's better to write it in a general format so that you can fill

in other datasets/columns/inputs that are not specific to your current dataset

4 / 16

The Process
First you need to define your function

Then you need to make sure your function is in your Global Environment

Usually people write their functions as .R script files

The file is saved somewhere they can access (in a project directory)

In your analysis file (could be .R or .Rmd), you call your function's .R file

Then you can use it exactly like you would a function from any other package

5 / 16

Defining Your Function
nameOfFunction <- function(input) {

 do something

return(whatever you want the output to be)

}

Use the keyword function

Curly brackets

Use the return() function to make sure that the output contains what you

want

6 / 16

Simple Example
Let's say you want a function that takes a number, squares it, and then multiplies

by 100.

weird_math <- function(number = is.numeric) {

 num_squared <- number^2

 num_squared_100 <- num_squared * 100

return(num_squared_100)

}

7 / 16

Now let's use our function!
weird_math(number = 6)

[1] 3600

If we want to store the output of our function...

newValue <- weird_math(number = 6)

newValue

[1] 3600

If we wanted to store the output for a vector of numbers...

vectorExample <- weird_math(number = 1:10)

vectorExample

[1] 100 400 900 1600 2500 3600 4900 6400 8100 10000

8 / 16

Some Tips
1. For your input, I suggest being as specific as possible for the names of

arguments. You want your users (aka you in 9 months) to easily figure out

what goes in each argument.

2. You want to think carefully about the data class for the inputs. You don't

technically need to specify it (with something like is.numeric), but you

should think very carefully about what you want it to be. How do you

anticipate someone using it?

3. Think carefully about what you want your output to be! Do you want it to be a

single number? Do you want to put together a data.frame and return the

data.frame? Do you want a list? Etc. You have to think through things!

4. Everything we've talked about in this class when it comes to code you can use

in a function. For instance, you can put a for loop within a function!

9 / 16

Another Example
The AX-CPT is a cognitive control task. It has 4 different trial types:

AX = the target trial (what we tell participants to be on the lookout for)

AY = a challenging trial type; correct cue, incorrect probe

BX = a challenging trial type; incorrect cue, correct probe

BY = the baseline trial; incorrect cue, incorrect probe

Each participant has a reaction time and accuracy measure for each of these trial

types. There are a number of various derived measures we can calculate that are

more useful than just looking at these individual trial types. For example:

10 / 16

PBI Example
axcpt

Participant ax_acc ay_acc bx_acc by_acc

1 ID1 0.8 0.6 0.8 0.9

2 ID2 0.6 0.5 0.5 0.8

3 ID3 0.4 0.2 0.7 0.8

4 ID4 0.8 0.9 0.5 1.0

5 ID5 0.7 0.7 0.6 0.9

6 ID6 0.9 0.8 0.7 1.0

7 ID7 0.4 0.5 0.5 0.7

8 ID8 0.5 0.5 0.6 0.8

9 ID9 0.6 0.6 0.7 0.8

10 ID10 0.9 0.7 0.8 1.0

11 / 16

PBI Example
So let's make a function to calculate the PBI so that if you run the AX-CPT on a new

dataset (maybe you collect data on a different population?), you don't need to re-

code everything.

pbi <- function(ay,bx){

 pbi <- (ay-bx)/(ay+bx)

 pbi <- round(x = pbi, digits = 2)

return(pbi)

}

now run the function!

pbiValues <- pbi(ay = axcpt$ay_acc, bx = axcpt$bx_acc)

pbiValues

[1] -0.14 0.00 -0.56 0.29 0.08 0.07 0.00 -0.09 -0.08 -0.07

12 / 16

One of my actual functions
This is the code I use to calculate grades when I teach Biological Psychology (yay

neuro things!)

Student Exam1 Exam2 Exam3 Exam4 Exam5 participationFinal

1 Student 1 96.5 105.0 97.5 98.5 97.50 104.16667

2 Student 2 75.5 78.0 90.5 92.0 96.00 104.16667

3 Student 3 49.5 74.0 90.5 43.0 92.50 79.16667

4 Student 4 92.5 88.0 99.0 97.0 98.00 104.16667

5 Student 5 90.0 91.0 99.0 87.0 94.00 104.16667

6 Student 6 81.5 80.0 98.5 97.0 97.00 104.16667

7 Student 7 85.0 63.5 91.5 83.0 90.00 104.16667

8 Student 8 92.0 105.0 98.0 100.0 100.00 95.83333

9 Student 9 84.5 88.0 97.5 97.0 91.75 46.66667

First I'm going to read in the .R file that has just the function in it. We use

source() instead of read.csv()

source(here::here("R", "gradingFunction.R"))

Note you should ignore the here::here part of this. In your own work, you'll simply point a working

directory to wherever the function is located 13 / 16

One of my actual functions

Notice how there is an i involved?

14 / 16

One of my actual functions
Now I'm going to use this function within a for loop!

"For each row in biopsych, apply the gradeFx function that I made"

for (i in 1:nrow(biopsych)) {

 biopsych$finalGrade[i] = gradeFx(classScores = biopsych)

}

biopsych

Student Exam1 Exam2 Exam3 Exam4 Exam5 participationFinal finalGrade

1 Student 1 96.5 105.0 97.5 98.5 97.50 104.16667 99.8

2 Student 2 75.5 78.0 90.5 92.0 96.00 104.16667 89.3

3 Student 3 49.5 74.0 90.5 43.0 92.50 79.16667 73.5

4 Student 4 92.5 88.0 99.0 97.0 98.00 104.16667 96.5

5 Student 5 90.0 91.0 99.0 87.0 94.00 104.16667 93.9

6 Student 6 81.5 80.0 98.5 97.0 97.00 104.16667 93.2

7 Student 7 85.0 63.5 91.5 83.0 90.00 104.16667 86.7

8 Student 8 92.0 105.0 98.0 100.0 100.00 95.83333 99.4

9 Student 9 84.5 88.0 97.5 97.0 91.75 46.66667 88.0

15 / 16

What to make of all of this
You don't actually need to know what is happening in my grading function exactly.

Here are the points to take home:

functions and for loops should both make your life easier. They are a pain

to get up and running, but once they are, they save you a TON of time.

You can put a function that you made within a for loop. You can also put a

for loop within a function. For example, you can make a function just for

bootstrapping confidence intervals if you wanted.

functions are especially helpful when you know you'll want to do the same

thing on multiple datasets.

Your flexibility is endless. The most important thing to do is to really consider

what it is you have and what it is you want to do. Thinking through these

problems is, by far, the hardest part of coding.

16 / 16

