
For Loops & Bootstrapping

The Problem
Copying and pasting code is not an efficient use of your time

Often you want to do the same thing but with different inputs:

Get the mean of a variable for 20 different groups

Plot different variables as your x-axis against the exact same y-axis

Do the exact same analysis and make the same plots for the levels of an

independent variable (e.g., patients and controls)

In sum, you're trying to iterate (perform repeatedly)

2 / 38

How do we address this?
In this class, we are going to talk specifically about for loops. Why?

They are general purpose. You will find them in nearly every single

programming language. If you decide to not use R and instead go to Python

or Matlab or whatever, you'll still come across them.

This is a fundamental component of programming. I would guess that you

learn this within the first 2 weeks of CS 131.

There are other ways to do this that are R-specific. We are NOT going to cover

these (counterintuitive, I know).

the apply family of functions, including lapply

using the purr package from the tidyverse

3 / 38

Lists
Lists are basically vectors but where every element can be a totally different data

class. Ex:

myList <- list(6, head(iris), "hello world", c(1, 3, 5, 7, 9))

myList

[[1]]

[1] 6

[[2]]

Sepal.Length Sepal.Width Petal.Length Petal.Width Species

1 5.1 3.5 1.4 0.2 setosa

2 4.9 3.0 1.4 0.2 setosa

3 4.7 3.2 1.3 0.2 setosa

4 4.6 3.1 1.5 0.2 setosa

5 5.0 3.6 1.4 0.2 setosa

6 5.4 3.9 1.7 0.4 setosa

[[3]]

[1] "hello world"

[[4]]

[1] 1 3 5 7 9

4 / 38

Lists
You can also name the elements in your list:

myList <- list(Numberz = 6, DFs = head(iris), Chars = "hello world", VectorKing = c(1, 3, 5, 7, 9))

myList

$Numberz

[1] 6

$DFs

Sepal.Length Sepal.Width Petal.Length Petal.Width Species

1 5.1 3.5 1.4 0.2 setosa

2 4.9 3.0 1.4 0.2 setosa

3 4.7 3.2 1.3 0.2 setosa

4 4.6 3.1 1.5 0.2 setosa

5 5.0 3.6 1.4 0.2 setosa

6 5.4 3.9 1.7 0.4 setosa

$Chars

[1] "hello world"

$VectorKing

[1] 1 3 5 7 9

5 / 38

Lists
The weirdest thing about lists is accessing the elements within a list. Think of it like

a book:

The element itself is like the chapter of a book

But there's a page that just says "Chapter 4" but doesn't contain any text

You need to tell R to go to the actual chapter

We can do this with double brackets 👇

myList[1]

$Numberz

[1] 6

myList[[1]]

[1] 6

6 / 38

Lists
Why does this matter? Say we wanted to take our number 6 from our list and add

it to the number 12

myList[1] + 12

Error in myList[1] + 12: non-numeric argument to binary operator

myList[[1]] + 12

[1] 18

7 / 38

Lists are weird
From Hadley Wickham, creator of tidyverse

8 / 38

Now on to for loops
for (i in 1:some number) {

 do something

}

"For each element in 1 through _, perform some function"

"Perform the function contained in this for loop on every single element in some list of

elements"

9 / 38

for loops

for (i in 1:some number) {

 do something

}

The important parts:

You can iterate over anything: rows of a data.frame, columns of a data.frame,

lists, or simple 1-dimensional vectors. The 1:some number portion are the

elements you’re iterating over. If you wanted to do something 5 times, you

could say 1:5. Most of the time, we don’t know that second number, though.

So we can use a function. 1:nrow(data.frame) or 1:length(list) or

1:length(vector).

The i stands for “each” and is the same type of i seen in equations. The top

line then reads: “For each item/element in 1 through some number”.

The part between the curly brackets { } is what you want to do (it’s the body

of the for loop).

10 / 38

A Simple Example
For each number in 1 through 10, print the following: "(number) squared is (that

number squared)"

So for the number 2, the output should be "2 squared is 4"

The functions we are going to use are print() and paste0().

for (i in 1:10) {

 print(paste0(i, " squared is ", i^2))

}

[1] "1 squared is 1"

[1] "2 squared is 4"

[1] "3 squared is 9"

[1] "4 squared is 16"

[1] "5 squared is 25"

[1] "6 squared is 36"

[1] "7 squared is 49"

[1] "8 squared is 64"

[1] "9 squared is 81"

[1] "10 squared is 100"

11 / 38

Storing the output
Is there any way for me to access any of the squared numbers from above? No!

If you want to store the output of a loop (which in almost all cases we do), you

need to initialize an empty object. This means make a blank object before running

your loop that will contain your stored results.

Let's run the same loop as last time, but this time let's store the squared numbers,

rather than just printing out some lines.

squaredNumbers <- NULL

for (i in 1:10) {

 squaredNumbers[i] <- i^2

}

squaredNumbers

[1] 1 4 9 16 25 36 49 64 81 100

12 / 38

Recap
The basic steps of constructing a for loop:

1. Figure out what it is that you want to iterate through (numbers, columns of a

data.frame, data.frames, a list, etc.)

2. Think about what you want the output to look like, and initialize an empty

object that can store the output

3. Type out all of the steps within the body of the loop

13 / 38

Applied Examples
What if you want to run the following models where the Y dependent variable

stays the same, but the X independent variable changes? For this first example,

let's say we only care about the -value.

lm(Sepal.Length ~ Sepal.Width, data = iris)

lm(Sepal.Length ~ Petal.Length, data = iris)

lm(Sepal.Length ~ Petal.Width, data = iris)

Sepal.Length Sepal.Width Petal.Length Petal.Width Species

1 5.1 3.5 1.4 0.2 setosa

2 4.9 3.0 1.4 0.2 setosa

3 4.7 3.2 1.3 0.2 setosa

4 4.6 3.1 1.5 0.2 setosa

5 5.0 3.6 1.4 0.2 setosa

6 5.4 3.9 1.7 0.4 setosa

p

14 / 38

Applied Examples
Thinking through what we need to happen:

1. We're iterating through specific columns of the iris data.frame -- so we need

to get those column names into a form we can iterate through.

2. The output is a vector that contains -values only

3. The body of the loop needs to contain the lm() functions

p

15 / 38

Applied Example 1
varsToIterate <- colnames(iris)[2:4]

sigValues <- NULL

for (i in 1:length(varsToIterate)) {

 model <- lm(Sepal.Length ~ iris[,i], data = iris)

 model <- tidy(model)

 sig <- model[[2,5]]

 sigValues[i] <- sig

}

sigValues

[1] 0.000000e+00 1.518983e-01 1.038667e-47

16 / 38

Applied Example 1
You can make comments within for loops

get the column names in a format that we can iterate through
varsToIterate <- colnames(iris)[2:4]

initialize an empty output vector
sigValues <- NULL

for (i in 1:length(varsToIterate)) {

run the model where i is the column that is varying
 model <- lm(Sepal.Length ~ iris[,i], data = iris)

the tidy function comes from the `broom` package
 model <- tidy(model)

find the p-value from the tidied model
 sig <- model[[2,5]]

store the p-value in the output
 sigValues[i] <- sig

}

print the output
sigValues

17 / 38

Applied Example 2
Now, what if you want to store the entire output of the model, not just the -value?

The output of tidy(model) is a data.frame. So the result of our loop will now be a

list of data.frames, rather than a vector of -values. Note the double brackets in

modelList[[i]]!

varsToIterate <- colnames(iris)[2:4]

modelList <- list()

for (i in 1:length(varsToIterate)) {

 model <- lm(Sepal.Length ~ iris[,i], data = iris)

 model <- tidy(model)

 modelList[[i]] <- model

}

p

p

18 / 38

Applied Example 2
print(modelList)

[[1]]

A tibble: 2 x 5

term estimate std.error statistic p.value

<chr> <dbl> <dbl> <dbl> <dbl>

1 (Intercept) 0 3.79e-17 0 1

2 iris[, i] 1 6.43e-18 1.56e17 0

[[2]]

A tibble: 2 x 5

term estimate std.error statistic p.value

<chr> <dbl> <dbl> <dbl> <dbl>

1 (Intercept) 6.53 0.479 13.6 6.47e-28

2 iris[, i] -0.223 0.155 -1.44 1.52e- 1

[[3]]

A tibble: 2 x 5

term estimate std.error statistic p.value

<chr> <dbl> <dbl> <dbl> <dbl>

1 (Intercept) 4.31 0.0784 54.9 2.43e-100

2 iris[, i] 0.409 0.0189 21.6 1.04e- 47
19 / 38

Applied Example 2.1
Let's modify this slightly so that each output data.frame has a name associated

with it (rather than 1, 2, 3)

varsToIterate <- colnames(iris)[2:4]

modelList <- list()

for (i in 1:length(varsToIterate)) {

 name <- paste0(varsToIterate[i])

 model <- lm(Sepal.Length ~ iris[,i], data = iris)

 model <- tidy(model)

 modelList[[name]] <- model

}

20 / 38

Applied Example 2.1
print(modelList)

$Sepal.Width

A tibble: 2 x 5

term estimate std.error statistic p.value

<chr> <dbl> <dbl> <dbl> <dbl>

1 (Intercept) 0 3.79e-17 0 1

2 iris[, i] 1 6.43e-18 1.56e17 0

$Petal.Length

A tibble: 2 x 5

term estimate std.error statistic p.value

<chr> <dbl> <dbl> <dbl> <dbl>

1 (Intercept) 6.53 0.479 13.6 6.47e-28

2 iris[, i] -0.223 0.155 -1.44 1.52e- 1

$Petal.Width

A tibble: 2 x 5

term estimate std.error statistic p.value

<chr> <dbl> <dbl> <dbl> <dbl>

1 (Intercept) 4.31 0.0784 54.9 2.43e-100

2 iris[, i] 0.409 0.0189 21.6 1.04e- 47
21 / 38

Applied Example 3
Let's do the same thing but with some modifications:

Let's also plot X & Y so we have a figure that corresponds with each model

Instead of the output being a list of the different models, what if we wanted

the information from all of the models to be contained within a data.frame?

When it comes to looping through plots, there are a few odd things:

the sym() function will take the quotes off of a string so that it can be

evaluated properly

!! says "actually evaluate what a variable stands for". This will make sense

when you see it in the code.

22 / 38

Applied Example 3
We want to store the model outputs AND a list of plots. So we need to initialize 2

things

modelDF <- data.frame() # for models

plotList <- list() # for plots

for (i in 1:length(varsToIterate)) {

 nameX <- paste0(varsToIterate[i]) # a character string for labels

 nameY <- "Sepal.Length" # doesn't change in the loop!

make the models

 model <- lm(Sepal.Length ~ iris[,i], data = iris)

 model <- tidy(model)

add a column that repeats whatever nameX is

for us, this will make it easier to keep track of what "i" is

 model$predictor <- rep(nameX, times = nrow(model))

now bind the current model underneath the previous model

so that it's all contained within the same data.frame

 modelDF <- rbind(modelDF, model)

now make the plots

 nameXplot <- sym(varsToIterate[i])

 plotList[[i]] <- ggplot(data = iris,

 aes(x = !! nameXplot,

 y = Sepal.Length)) +

 geom_point(color = "cornflowerblue") +

 labs(title = paste0(nameX, " by ", nameY),

 x = nameX,

 y = nameY)

}

23 / 38

Applied Example 3
modelDF

A tibble: 6 x 6

term estimate std.error statistic p.value predictor

<chr> <dbl> <dbl> <dbl> <dbl> <chr>

1 (Intercept) 0 3.79e-17 0 1 e+ 0 Sepal.Width

2 iris[, i] 1 6.43e-18 1.56e17 0 Sepal.Width

3 (Intercept) 6.53 4.79e- 1 1.36e 1 6.47e- 28 Petal.Length

4 iris[, i] -0.223 1.55e- 1 -1.44e 0 1.52e- 1 Petal.Length

5 (Intercept) 4.31 7.84e- 2 5.49e 1 2.43e-100 Petal.Width

6 iris[, i] 0.409 1.89e- 2 2.16e 1 1.04e- 47 Petal.Width

24 / 38

[[1]]

[[2]]

[[1]]

Applied Example 3

25 / 38

Bootstrapping
to get oneself out of a situation using existing resources

In statistics...any test or metric that uses random sampling with replacement

a bootstrapped mean

bootstrapped confidence intervals

bootstrap anything your heart desires!

SAMPLING WITH REPLACEMENT

26 / 38

Bootstrapping
Alternative to traditional NHST (considered a "resampling method")

Previously, we had to use equations, formulas, and a lot of assumptions to get

our sampling distribution

But what if we don't know the theoretical sampling distribution or we can't

verify it?

We build the sampling distribution empirically by random sampling with

replacement from the sample

Easier to interpret and more robust because we're not relying on a bunch of

assumptions/equations to estimate our sampling distribution -- we actually

created the sampling distribution instead!

robust in statistics can mean different things. Here we're saying that it

doesn't matter if a small thing changes in the dataset, because the

bootstrapped mean will be resilient to those small changes.

27 / 38

Illustration
Imagine you had a sample of 6 people that happen to live in NYC in the mid 1990's.

Let's just say their names are Rachel, Monica, Phoebe, Joey, Chandler, and Ross.

Maybe we have the height of each of these 6 individuals (in inches). But now let's

say we want to get a sense of the average height in a person in their mid 20's in

the 1990's in NYC. We can bootstrap the mean height. That is, we are going to draw

from this group many samples of 6 people with replacement, each time calculating

the average height of the sample.

[1] "Monica" "Chandler" "Phoebe" "Monica" "Chandler" "Phoebe"

[1] 68.33333

[1] "Monica" "Rachel" "Ross" "Phoebe" "Phoebe" "Ross"

[1] 68.66667

[1] "Monica" "Ross" "Chandler" "Joey" "Chandler" "Ross"

[1] 70.83333

[1] "Phoebe" "Phoebe" "Joey" "Phoebe" "Phoebe" "Ross"

[1] 69 16667
28 / 38

Illustration
boot = 10000

friends = c("Rachel", "Monica", "Phoebe", "Joey", "Chandler", "Ross")

heights = c(65, 65, 68, 70, 72, 73)

sample_means = NULL

for(i in 1:boot){

 this_sample = sample(heights, size = length(heights), replace = TRUE)

 sample_means[i] = mean(this_sample)

}

mean(sample_means)

[1] 68.85162

29 / 38

Illustration

30 / 38

Bootstrapped Mean
Let's say we have a sample of 100 participants that complete an IQ test. IQ tests

typically have a mean of 100 and a standard deviation of 15. We want to get the

mean IQ of our sample of 100 participants, but we want it to be a robust mean --

that is, we want to be pretty darn confident in our mean. What should we do?

We can bootstrap our mean! And we can do that using a for loop:

for each iteration of ## of iterations...

Randomly sample FROM your current sample (so choose 100 from your

100)

But when choosing your new 100 data points, you are going to REPLACE

each participant

This means Participant #1 could be chosen many times

On the next iteration (e.g., i + 1) do another round of choose 100 from

your original 100 with replacement

etc.

After we run all of our iterations, then we will get the mean of means

31 / 38

Bootstrapping
This whole process sounds like something you are already familiar with --

sampling distributions

You can think of bootstrapping as building up your sampling distribution for

whatever statistic you want. But instead of repeating your experiment 1000x,

you're using a random sample of your current experiment.

32 / 38

Bootstrapped Means Example
iqs

[1] 96 106 160 115 117 164 127 75 92 100 150 124 125 116 96 167 128 54

[20] 99 81 106 82 91 94 62 138 118 79 151 126 104 140 139 138 134 130

[39] 104 102 92 107 75 178 149 79 101 99 136 110

33 / 38

Bootstrapped Means Example
bsMeans <- NULL

for (i in 1:100) {

 subsample <- sample(x = iqs,

 size = 50,

 replace = T)

 bsMeans[i] <- mean(subsample)

}

34 / 38

Bootstrapped Means Example
Let's look at our vector of means

bsMeans

[1] 108.24 116.12 103.58 110.66 119.66 111.28 124.18 114.98 115.40 114.98

[11] 110.76 116.42 113.02 111.06 112.32 108.14 111.30 115.70 115.96 121.50

[21] 112.78 110.96 108.40 108.22 122.12 108.84 119.16 118.40 114.32 112.78

[31] 114.36 113.78 117.92 121.16 112.54 116.14 108.82 120.72 115.00 116.30

[41] 112.56 111.24 112.28 111.98 107.18 114.52 114.58 113.20 112.62 114.42

[51] 122.10 117.58 107.96 111.52 117.52 107.58 107.36 115.54 109.72 115.74

[61] 116.36 114.90 112.56 110.34 112.04 111.72 110.42 114.38 119.72 115.62

[71] 116.48 118.86 119.82 114.64 113.00 116.86 109.86 114.36 109.26 115.66

[81] 108.84 116.18 113.70 118.86 111.24 112.08 108.12 119.14 119.12 111.92

[91] 113.32 113.90 120.70 121.54 108.76 107.96 107.82 108.14 115.66 111.90

35 / 38

Bootstrapped Means Example
Now, get the mean of our vector of means...this is our bootstrapped mean

mean(bsMeans)

[1] 113.8094

When I made these fake IQ scores, I set the "true" population mean to be 113.

Our mean of the original sample was mean(iqs) = 114.02

Our bootstrapped mean is mean(bsMeans) = 113.8094

The bootstrapped mean is closer to the true population mean -- it's more robust,

and therefore we trust it more.

36 / 38

What can you bootstrap?
Any statistic!

central tendency (means, medians, modes)

dispersion (variances, standard deviations)

other estimates (confidence intervals, reliability coefficients, correlations, etc.)

Models!

on each iteration where you draw with replacement, run your model

then take the mean of all the coefficients (like regression coefficients, t-values,

etc.)

what can't you bootstrap?

37 / 38

Final Thoughts
Code is supposed to make your life EASIER. Use for loops to your

advantage! That means if you find yourself copying/pasting the same thing a

billion times with only minor changes, there’s likely a much simpler way of

doing everything you need all in one go.

check out nested if/else statements in the practice set!

for R specific functions, check out the lapply() function and the purr

package

when you are first writing your for loop and testing things, use really

small iterations; once it's working properly, then you can run a ton of

iterations

Bootstrapping is just a for loop. You can bootstrap anything your heart

desires.

The biggest piece of advice I have is to think carefully about what you want the

end result to look like and then work backwards. Don’t just start doing stuff to

your dataset because you think that’s what your supposed to do. Think “in

order to make this plot, I need my data in this particular format, what do I

need to do to get there?”

38 / 38

