Power Plus



Recap

e How we utilize our sampling distributions to make probability statements
about the comparison across means (t-tests, ANOVA etc.)
e The NHST process

2/50



Today

Confidence Intervals
p-values redux

e Power

Problems with NHST
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Confidence Intervals

The sampling distribution of the mean has variability, represented by the SEM,
reflecting uncertainty in the sample mean as an estimate of the population mean.

The assumption of normality allows us to construct an interval within which we
have good reason to believe a population mean will fall:

X —(1.96 x SEM) < u < X + (1.96 x SEM)
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Confidence Intervals

X —(1.96 x SEM) < u< X+ (1.96 x SEM)

e This is referred to as the 95% confidence interval (CI)
e The 95% CI is sometimes represented as:

A

o

VN

Clys = X £ [1.96——]
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Confidence Intervals

Confidence Intervals are estimates of precision

If you have a very wide (I, it means there's a very large range that would be
reasonable for that true population parameter. Not what you'd call "precise".

If you have a narrower CI, there's a much smaller range that would be reasonable
for that true population parameter. More precise.

If you are doing a t-test, and your CI includes the number 0, what does that mean
in terms of significance?
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The Normal and t Distributions
0.4-

The normal
distribution
assumes we know
the population
mean and standard
deviation. But we
don't. We only know
the sample mean
and standard
deviation, and those
have some
uncertainty about
them.

0.3-

0.1-

That uncertainty is 0.0-
reduced with large -4 .2 0 2 4
samples, so that it's Variable X

o erouatrie ~ Nomal = 1) = 1000) = 129 - 16
samples, the t
distribution is better.
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t distribution

e The primary difference between the normal distribution and the t distribution
is the fatter tails

o This produces wider confidence intervals
o The penalty we have to pay for our ignorance about the population

* The form of the confidence interval remains the same. We simply substitute a
corresponding value from the t distribution (using df = N — 1).

A

— o

A

o

VN

Clgs = X + [tgrs5.a7—N 1

]
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Confidence Intervals

What does it NOT mean?

e Thereis a 95% probability that the true mean lies inside the confidence
interval

What it actually means:

e If we carried out random sampling from the population a large number of

times...
e and calculated the 95% confidence interval each time...
e then 95% of those intervals can be expected to contain the population mean.

Interactive Example

9/50


https://rpsychologist.com/d3/ci/

Examples

In the past, my classroom exams (aggregating over many classes) have a mean of 90 and a standard
deviation of 8.

My next class will have 100 students. What range of exam means would be plausible if this class is
similar to past classes (comes from the same population)?

sem = SD/sqrt(N)

ci_lb_z = M - sem *x gnorm(p = .975)
ci_ub_z = M + sem * gnorm(p = .975)
print(c(ci_lb_z, ci_ub_z))

## [1] 88.43203 91.56797
ci_lb_z = M - sem * qt(p = .975, df = N-1)
ci_ub_z = M + sem *x qt(p = .975, df = N-1)

print(c(ci_lb_z, ci_ub_z))

## [1] 88.41263 91.58737
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Examples

I give a classroom exam that produces a mean of 83.4 and a standard deviation of 10.6. A total of 26
students took the exam.

What is the 95% confidence interval around the mean?

M = 83.4
SD = 10.6
N = 26

sem = SD/sqrt(N)

ci_lb_z = M - sem * gnorm(p = .975)
ci_ub_z = M + sem * gnorm(p = .975)
print(c(ci_lb_z, ci_ub_z))

## [1] 79.32557 87.47443

ci_lb_z = M - sem x qt(p = .975, df = N-1)
ci_ub_z = M + sem *x qt(p = .975, df = N-1)

print(c(ci_lb_z, ci_ub_z))

## [1] 79.11857 87.68143
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Recap

Confidence intervals are estimates of precision
They tell you nothing about the strength of an association

If it overlaps with 0, not significant. But other than that, it can't tell you much in the
way of significance.
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Significance

We set an a level. This is the rate at which we are OK making a false positive (more
on this later).

e By convention, in Psychology, &« = .05 or a = .01

This alpha is our cutoff rate. If our p-value is smaller than our «, we claim
"Significance!"

So what does the p-value actually mean?
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p-values

The probability of getting a test statistic or more extreme given that the null
hypothesis is true

Last lecture, we went through an example of z-test. We wound up with a z-statistic
of —2.18 and came out with a p-value of .029.

e HO = difference in applicant means between men and women is 0 (no
difference)

e HA = difference in applicant means between men and women is not O (there is
a difference)

"The probability that the average female applicant's score would be at least 2.18
units away (or even further away, more negative) from the average male score,
given that we expect no difference between mean, is .029."

It's very, very unlikely to be the case that we would get a score of —2.18 or even
more extreme ( —3 etc.), if these means come from the same population
distribution. It's so unlikely and rare, in fact, that we say "these are significantly
different from one another"
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A p-value DOES NOT:

Tell you that the probability that the null hypothesis is true.

Prove that the alternative hypothesis is true.

Tell you anything about the size or magnitude of any observed difference in
your data.

Tell you anything about the precision of your estimate.
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More on p-values

Is that a really low probability?

Before you test your hypotheses -- ideally, even before you collect the data -- you
have to determine how low is too low.

Researchers set an alpha ( « ) level that is the probability at which you declare your
result to be "statistically significant." How do we determine this?

Consider what the p-value means. In a world where the null ( Hy ) is true, then by
chance, we'll get statistics in the extreme. Specifically, we'll get them « proportion
of the time. So « is our tolerance for False Positives or incorrectly rejecting the null.
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Errors

In hypothesis testing, we can make two kinds of errors.

Reject H Do not reject
HyTrue TypelError Correct decision

Hj False Correct decision  Type II Error

Falsely rejecting the null hypothesis is a Type I error. Traditionally this has been
viewed as particularly important to control at a low level (akin to avoiding false
conviction of an innocent defendant).
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Errors

In hypothesis testing, we can make two kinds of errors.

Reject H Do not reject
HyTrue TypelError Correct decision

Hj False Correct decision  Type II Error

Failing to reject the null hypothesis when it is false is a Type II error. This is
sometimes viewed as a failure in signal detection.
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Errors

In hypothesis testing, we can make two kinds of errors.

Reject H) Do not reject
HyTrue TypelError Correct decision

Hj False Correct decision  Type II Error

Null hypothesis testing is designed to make it easy to control Type I errors. We set
a minimum proportion of such errors that we would be willing to tolerate in the
long run. This is the significance level ( & ). By tradition this is no greater than .05.
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Errors

In hypothesis testing, we can make two kinds of errors.

Reject H Do not reject
HyTrue TypelError Correct decision

Hj False Correct decision  Type II Error

Controlling Type Il errors is more challenging because it depends on several
factors. But, we usually DO want to control these errors. Power is the probability of
correctly rejecting a false null hypothesis.
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Some Greek letters

«a -- The rate at which we make Type I errors, which is the same « as the cut-off for
p -values.

B -- The rate at which we make Type II errors.
1 — B -- statistical power.

Note that these are all probability statements; not abstract ideas
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Controlling Type Il errors is the goal of power analysis and must contend with four
quantities that are interrelated:

Sample size

Effect size
Significance level ()
e Power

When any three are known, the remaining one can be determined. Usually this
translates into determining the power present in a research design, or,
determining the sample size necessary to achieve a desired level of power.

We must specify a specific value for the alternative hypothesis to estimate and
control Type II errors.
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Suppose we have a measure of social sensitivity that we have administered to a
random sample of 20 psychology students. This measure has a population mean (
w ) of 100 and a standard deviation ( o) of 20. We suspect that psychology
students are more sensitive to others than is typical and want to know if their
mean, which is 110, is sufficient evidence to reject the null hypothesis that they are
no more sensitive than the rest of the population.

We would also like to know how likely it is that we could make a mistake by
concluding that psychology students are not different when they really are: A Type
IT error.
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We begin by
defining the location
in the null
hypothesis
distribution beyond
which empirical
results would be
considered
sufficiently unusual
to lead us to reject
the null hypothesis.
We control these
mistakes (Type I
errors) at the
chosen level of
significance (

a = .05).

70 80

90

100
Means

110

120

130
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Critical Value = uy + Z.gsi

VN

gnorm(.95)

## [1] 1.644854

20
Critical Value = 100 + 1.645—— = 107.4
v 20

What if the null hypothesis is false?
How likely are we to correctly reject
the null hypothesis in the long run?

70

80

90

100
Means

110

120

130
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To determine the
probability of a Type
IT error we must
specify a value for
the alternative
hypothesis. We will
use the sample
mean of 110.

In the long run, if
psychology samples
have a mean of 110
(0 =20, N = 20),
we will correctly
reject the null with
probability of .72
(power). We will
incorrectly fail to

v

D

reject the null with
probability of .28 ( 8

).

70

80

90 100
Means

Power B8 Type | Error

110 120

Type |l Error

130
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i

70 80 90 100 110 120 130
Means

Power M Type | Error Type Il Error

Once the critical value and alternative
value is established, we can determine
the location of the critical value in the
alternative distribution.

= —.59

7z, — CVBU— 1
VN
107.4 — 110
Zy = 20
V20

The proportion of the alternative
distribution that falls below that point
is the probability of a Type Il error

(.28); power is then .72.
pnorm(-.59)

## [1] 0.2775953
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The choice of 110 as the mean of H is completely arbitrary. What if we believe
that the alternative mean is 1157 This larger signal should be easier to detect.

107.4 — 115
A= 50 = —1.71

V20

l1-pnorm(-1.71)

## [1] 0.9563671

70 80 90 100 110 120 130
Means

Power [ Type | Error Type Il Error

28 /50



What if instead we increase the sample size? This will reduce variability in the
sampling distribution, making the difference between the null and alternative
distributions easier to see.

20
CV =100+ 1.645—— = 105.2
v40

105.2 — 110
ST
V40

= —1.52

l1-pnorm(-1.52)

## [1] 0.9357445

70 80 90 100 110 120 130
Means
fill Power [ Type | Error Type Il Error
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What if we decrease the significance level to .025?

That will move the critical value:
CVy = 100—|—196[ 20 ]— 108.8
0 — . m — .

108.8 — 110
p— A p—
V20

A —.28

1-pnorm(-.28)

v

70 80 90 100 110 120 130
Means

## [1] 0.6102612

Power [ Type | Error Type Il Error

I strongly recommend playing around with different configurations of IV, a and
the difference in means (d) in this online demo.
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https://rpsychologist.com/d3/NHST/

How can power be increased?

w

70

80 90 100 110 120
Means

[ Power M Type | Error [ Type Il Error

130

g CVo — 1
1= o
VN
increase 41
decrease CV}
increase N
reduce o
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Most published research is
underpowered!!!

* We strive for power of ~.80; making Type II errors 20% of the time
e We are often farrrrrrrrrrr below this
e Reproducibility Crisis

e It's like, super bad
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NHST and Good Science

"The textbooks are wrong. The teaching is wrong. The seminar you just
attended is wrong. The most prestigious journal in your scientific field is
wrong." - Ziliak and McCloskey (2008)

"... surely the most bone-headedly misguided procedure ever
institutionalized in the rote training of science students" - Rozeboom
(1997)

"What's wrong with [NHST]? Well, among many other things, it does not
tell us what we want to know, and we so much want to know what we
want to know that, out of desperation, we nevertheless believe that it
does!" - Cohen (1994)
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What kind of mess have we got ourselves into?

p < .05 as a condition for publication

Publication as a condition for tenure

Novelty as a condition for publication in top-tier journals

Institutionalization of NHST

High public interest in psychological research

Unavoidable role of human motives: fame, recognition, ego
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What kind of science have we produced?

p < .05 as a primary goal; dichotomous thinking (based on p ): research either
“succeeds” or “fails” to find the expected difference

e Publication bias: “Successes” are published, “failures” end up in file drawers
e Overestimation of effect size in published work

¢ Underestimation of complexity (why did the failures occur?)

e Underestimation of power

e Inability to replicate

e Settling for vague alternative hypotheses: “We expect a difference”
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Focusing on p -values

Imagine rolling a die.
* What's the probability you roll a 27
o P(2)=1/6 =16.7%

e If you roll the die twice, what's the probability that you get a 2 at least once?

30.6%

e If you roll the die 5 times, what's the probability that you get a 2 at least once?
59.8%

Roll the die enough times, and you'll get a 2 eventually. Significance testing when
the null is true is like rolling a 20-sided die.
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False Positive Psychology

Simmons et al. (2011) pointed out that each study is not a single roll of the die.

Instead, each study, even those with a single statistical test, might represent many
rolls of the die.

* Researcher degrees of freedom: Decisions that a researcher makes that
change the statistical test.

o Examples:

= Additional dependent variabiles
= Tests with and without covariates

= Data peeking (testing effect as data comes in and stopping when
result is significant)
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http://127.0.0.1:6170/23-slides_files/figure-html/Simmons_etal_2011.pdf

Each time I see how a decision affected my result, I am rolling the dice again.

Table |I. Likelihood of Obtaining a False-Positive Result

Significance level

Researcher degrees of freedom p <.l p<.05 p<.0l

Situation A: two dependent variables (r = .50) 17.8% 9.5% 2.2%

Situation B: addition of 10 more observations 14.5% 7.7% 1.6%
per cell

Situation C: controlling for gender or interaction 21.6% 11.7% 2.7%
of gender with treatment

Situation D: dropping (or not dropping) one of 23.2% 12.6% 2.8%
three conditions

Combine Situations A and B 26.0% 14.4% 3.3%

Combine Situations A, B,and C 50.9% 30.9% 8.4%

Combine Situations A, B, C,and D 81.5% 60.7% 21.5%
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p-hacking

p-hacking: collecting or selecting data or statistical analyses until non-significant
results become significant.

Prior to 2011, this was common practice. In fact, it was often taught as best
practices.

* "Explore your data."
e "Understand your data."
e "Test sensitivity..."

We should recognize now that this inflates Type I error.
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The publication of this, following the claim by Ioannidis (2005) that as many as half
of published findings are false prompted researchers to take a second look at the
"knowns" in our literatures.

If we can demonstrate these "known" effects, then we're ok. Our effects are most
likely true.

And if that had happened, we probably wouldn't have two lectures in this class
dedicated to problems with NHST and how to address them.
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http://127.0.0.1:6170/23-slides_files/figure-html/Ioannidis_2005.pdf

The inability to replicate published research has been viewed as especially
troubling.

e This has been a long-standing concern, but the poster child is undoubtedly
"Estimating the reproducibility of psychological science" by the Open Science
Collaboration (Science, 2015, 349, 943).
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http://127.0.0.1:6170/23-slides_files/figure-html/OSC_2015.pdf

Only 36% of the studies were replicated, despite high power and claimed fidelity of
the methods.

Effect size comparison

Mean

(SD) Median Mean (SD) Median Average
Percent  original original replication replication replication

effect df/N  effect size df/N power

size

Replications
P <0.05
in original
direction

Overall 35/97 36 0403 (0188) 54 0197 (0257) 68 092
JPSPsocial 7/31 23 029(010) 73 007(0l) 120 091
JEPLMC cognltwe ) 13/27 48 047(018) 365 027 (0. 24) 43 093
PSCl,social 724 29 039(020) 76 021(030) 122 092
PSCl,cognitve  8/15 53 053(02) 23 029(035) 21 094
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Why is it so hard to replicate?

e Poor understanding of context necessary to produce most effects

o We do not recognize the boundary conditions of effects especially when
the limiting conditions are kept constant

e Incomplete communication of the necessary conditions

o Akin to reading just the first few ingredients for a recipe and then trying to
duplicate the dish.
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Why is it so hard to replicate?

Sparse communication fosters belief by others that effects are simpler and easier
to produce than they really are.

The reality is that key elements have been left out:
e specific methodological or analytic details

e and the tests run before and after the ones that were published.
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What can we do?

BE TRANSPARENT

BE TRANSPARENT

BE TRANSPARENT

BE TRANSPARENT

BE TRANSPARENT

BE TRANSPARENT

BE TRANSPARENT

BE TRANSPARENT

BE TRANSPARENT

BE TRANSPARENT

BE TRANSPARENT

BE TRANSPARENT

BE TRANSPARENT

BE TRANSPARENT

BE TRANSPARENT

BE TRANSPARENT

BE TRANSPARENT

BE TRANSPARENT

BE TRANSPARENT

BE TRANSPARENT

BE TRANSPARENT

BE TRANSPARENT
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R & RMarkdown

Using scripts and . Rmd files is a great way to get you on the path towards open
science!

When you publish a paper, you now will likely need to publish your code. And with
markdown, you can annotate it properly to let the reader know exactly what you

did and why you did it

Don't be your own worst collaborator...
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Back. Up. Your. Code.



Version control with Git

e Gitis a version control system. Think Microsoft Track Changes for your code
e Allows multiple collaborators to contribute to the same project

e If you are going into data science (outside of academia), you 100% need to
know this to get hired

e If you are staying in academic research, you 99% need to know this for your
own sanity
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GitHub

e GitHub is one site that facilitates the use of Git

e Repositories can be private or public -- allows you to share your work with
others

e GitHub also plays well with Markdown language (as in RMarkdown)
e Pair GitHub with R to make websites

e Thisis where R Projects becomes really handy. Ask me more about them,
and check this out if you're interested: happy git with r
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https://happygitwithr.com/

Next time...

Moving towards relationships with correlations & regression



