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Recap
How we utilize our sampling distributions to make probability statements

about the comparison across means (t-tests, ANOVA etc.)

The NHST process
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Today
Confidence Intervals

p-values redux

Power

Problems with NHST
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Confidence Intervals
The sampling distribution of the mean has variability, represented by the SEM,

reflecting uncertainty in the sample mean as an estimate of the population mean.

The assumption of normality allows us to construct an interval within which we

have good reason to believe a population mean will fall:

X̄ − (1.96 × SEM) ≤ μ ≤ X̄ + (1.96 × SEM)
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Confidence Intervals

This is referred to as the 95% confidence interval (CI)

The 95% CI is sometimes represented as:

X̄ − (1.96 × SEM) ≤ μ ≤ X̄ + (1.96 × SEM)

CI95 = X̄ ± [1.96 ]
σ̂

√N
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Confidence Intervals
Confidence Intervals are estimates of precision

If you have a very wide CI, it means there's a very large range that would be

reasonable for that true population parameter. Not what you'd call "precise".

If you have a narrower CI, there's a much smaller range that would be reasonable

for that true population parameter. More precise.

If you are doing a t-test, and your CI includes the number 0, what does that mean

in terms of significance?
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The 

The normal

distribution

assumes we know

the population

mean and standard

deviation. But we

don’t. We only know

the sample mean

and standard

deviation, and those

have some

uncertainty about

them.

That uncertainty is

reduced with large

samples, so that it's

“close enough” to

the normal. In small

samples, the 

distribution is better.

t

t
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 distribution
The primary difference between the normal distribution and the  distribution

is the fatter tails

This produces wider confidence intervals

The penalty we have to pay for our ignorance about the population

The form of the confidence interval remains the same. We simply substitute a

corresponding value from the  distribution (using df = ).

t

t

t N − 1

CI95 = X̄ ± [1.96 ]
σ̂

√N

CI95 = X̄ ± [t.975,df=N−1 ]
σ̂

√N
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Confidence Intervals
What does it NOT mean?

There is a 95% probability that the true mean lies inside the confidence

interval

What it actually means:

If we carried out random sampling from the population a large number of

times...

and calculated the 95% confidence interval each time...

then 95% of those intervals can be expected to contain the population mean.

Interactive Example
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Examples
In the past, my classroom exams (aggregating over many classes) have a mean of 90 and a standard

deviation of 8.

My next class will have 100 students. What range of exam means would be plausible if this class is

similar to past classes (comes from the same population)?

M = 90

SD = 8

N = 100

sem = SD/sqrt(N)

ci_lb_z = M - sem * qnorm(p = .975)

ci_ub_z = M + sem * qnorm(p = .975)

print(c(ci_lb_z, ci_ub_z))

## [1] 88.43203 91.56797

ci_lb_z = M - sem * qt(p = .975, df = N-1)

ci_ub_z = M + sem * qt(p = .975, df = N-1)

print(c(ci_lb_z, ci_ub_z))

## [1] 88.41263 91.58737
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Examples
I give a classroom exam that produces a mean of 83.4 and a standard deviation of 10.6. A total of 26

students took the exam.

What is the 95% confidence interval around the mean?

M = 83.4

SD = 10.6

N = 26

sem = SD/sqrt(N)

ci_lb_z = M - sem * qnorm(p = .975)

ci_ub_z = M + sem * qnorm(p = .975)

print(c(ci_lb_z, ci_ub_z))

## [1] 79.32557 87.47443

ci_lb_z = M - sem * qt(p = .975, df = N-1)

ci_ub_z = M + sem * qt(p = .975, df = N-1)

print(c(ci_lb_z, ci_ub_z))

## [1] 79.11857 87.68143
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Recap
Confidence intervals are estimates of precision

They tell you nothing about the strength of an association

If it overlaps with 0, not significant. But other than that, it can't tell you much in the

way of significance.
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Significance
We set an  level. This is the rate at which we are OK making a false positive (more

on this later).

By convention, in Psychology,  or 

This alpha is our cutoff rate. If our p-value is smaller than our , we claim

"Significance!"

So what does the -value actually mean?

α

α = .05 α = .01

α

p
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p-values
The probability of getting a test statistic or more extreme given that the null

hypothesis is true

Last lecture, we went through an example of -test. We wound up with a -statistic

of  and came out with a -value of .

H0 = difference in applicant means between men and women is 0 (no

difference)

HA = difference in applicant means between men and women is not 0 (there is

a difference)

"The probability that the average female applicant's score would be at least 2.18

units away (or even further away, more negative) from the average male score,

given that we expect no difference between mean, is ."

It's very, very unlikely to be the case that we would get a score of  or even

more extreme (  etc.), if these means come from the same population

distribution. It's so unlikely and rare, in fact, that we say "these are significantly

different from one another"

z z
−2.18 p .029

.029

−2.18
−3
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A p-value DOES NOT:
Tell you that the probability that the null hypothesis is true.

Prove that the alternative hypothesis is true.

Tell you anything about the size or magnitude of any observed difference in

your data.

Tell you anything about the precision of your estimate.
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More on p-values
Is that a really low probability?

Before you test your hypotheses -- ideally, even before you collect the data -- you

have to determine how low is too low.

Researchers set an alpha (  ) level that is the probability at which you declare your

result to be "statistically significant." How do we determine this?

Consider what the p-value means. In a world where the null (  ) is true, then by

chance, we'll get statistics in the extreme. Specifically, we'll get them  proportion

of the time. So  is our tolerance for False Positives or incorrectly rejecting the null.

α

H0

α
α
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Errors
In hypothesis testing, we can make two kinds of errors.

Reject Do not reject

 True Type I Error Correct decision

 False Correct decision Type II Error

Falsely rejecting the null hypothesis is a Type I error. Traditionally this has been

viewed as particularly important to control at a low level (akin to avoiding false

conviction of an innocent defendant).

H0

H0

H0
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Errors
In hypothesis testing, we can make two kinds of errors.

Reject Do not reject

 True Type I Error Correct decision

 False Correct decision Type II Error

Failing to reject the null hypothesis when it is false is a Type II error. This is

sometimes viewed as a failure in signal detection.

H0

H0

H0
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Errors
In hypothesis testing, we can make two kinds of errors.

Reject Do not reject

 True Type I Error Correct decision

 False Correct decision Type II Error

Null hypothesis testing is designed to make it easy to control Type I errors. We set

a minimum proportion of such errors that we would be willing to tolerate in the

long run. This is the significance level (  ). By tradition this is no greater than .05.

H0

H0

H0

α
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Errors
In hypothesis testing, we can make two kinds of errors.

Reject Do not reject

 True Type I Error Correct decision

 False Correct decision Type II Error

Controlling Type II errors is more challenging because it depends on several

factors. But, we usually DO want to control these errors. Power is the probability of

correctly rejecting a false null hypothesis.

H0

H0

H0
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Some Greek letters

 -- The rate at which we make Type I errors, which is the same  as the cut-off for

 -values.

 -- The rate at which we make Type II errors.

 -- statistical power.

Note that these are all probability statements; not abstract ideas

α α
p

β

1 − β
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Controlling Type II errors is the goal of power analysis and must contend with four

quantities that are interrelated:

Sample size

Effect size

Significance level (  )

Power

When any three are known, the remaining one can be determined. Usually this

translates into determining the power present in a research design, or,

determining the sample size necessary to achieve a desired level of power.

We must specify a specific value for the alternative hypothesis to estimate and

control Type II errors.

α
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Suppose we have a measure of social sensitivity that we have administered to a

random sample of 20 psychology students. This measure has a population mean (

 ) of 100 and a standard deviation (  ) of 20. We suspect that psychology

students are more sensitive to others than is typical and want to know if their

mean, which is 110, is sufficient evidence to reject the null hypothesis that they are

no more sensitive than the rest of the population.

We would also like to know how likely it is that we could make a mistake by

concluding that psychology students are not different when they really are: A Type

II error.

μ σ
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We begin by

defining the location

in the null

hypothesis

distribution beyond

which empirical

results would be

considered

sufficiently unusual

to lead us to reject

the null hypothesis.

We control these

mistakes (Type I

errors) at the

chosen level of

significance (

 ).α = .05
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qnorm(.95)

## [1] 1.644854

What if the null hypothesis is false?

How likely are we to correctly reject

the null hypothesis in the long run?

Critical Value = μ0 + Z.95
σ

√N

Critical Value = 100 + 1.645 = 107.4
20

√20
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To determine the

probability of a Type

II error we must

specify a value for

the alternative

hypothesis. We will

use the sample

mean of 110.

In the long run, if

psychology samples

have a mean of 110

( ,  ),

we will correctly

reject the null with

probability of .72

(power). We will

incorrectly fail to

reject the null with

probability of .28 ( 

).

σ = 20 N = 20

β

26 / 50



Once the critical value and alternative

value is established, we can determine

the location of the critical value in the

alternative distribution.

The proportion of the alternative

distribution that falls below that point

is the probability of a Type II error

(.28); power is then .72.

pnorm(-.59)

## [1] 0.2775953

Z1 =
CV0 − μ1

σ

√N

Z1 = = −.59
107.4 − 110

20
√20
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1-pnorm(-1.71)

## [1] 0.9563671

The choice of 110 as the mean of  is completely arbitrary. What if we believe

that the alternative mean is 115? This larger signal should be easier to detect.

H1

Z1 = = −1.71
107.4 − 115

20

√20
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1-pnorm(-1.52)

## [1] 0.9357445

What if instead we increase the sample size? This will reduce variability in the

sampling distribution, making the difference between the null and alternative

distributions easier to see.

CV = 100 + 1.645 = 105.2
20

√40

Z1 = = −1.52
105.2 − 110

20
√40
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That will move the critical value:

1-pnorm(-.28)

## [1] 0.6102612

What if we decrease the significance level to .025?

I strongly recommend playing around with different configurations of ,  and

the difference in means (  ) in this online demo.

CV0 = 100 + 1.96[ ] = 108.8
20

√20

Z1 = = −.28
108.8 − 110

20
√20

N α
d
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increase 

decrease 

increase 

reduce 

How can power be increased?

Z1 =
CV0 − μ1

σ

√N

μ1

CV0

N
σ
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Most published research is
underpowered!!!

We strive for power of ~.80; making Type II errors 20% of the time

We are often farrrrrrrrrrr below this

Reproducibility Crisis

It's like, super bad
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NHST and Good Science
"The textbooks are wrong. The teaching is wrong. The seminar you just

attended is wrong. The most prestigious journal in your scientific field is

wrong." – Ziliak and McCloskey (2008)

"... surely the most bone-headedly misguided procedure ever

institutionalized in the rote training of science students" – Rozeboom

(1997)

"What's wrong with [NHST]? Well, among many other things, it does not

tell us what we want to know, and we so much want to know what we

want to know that, out of desperation, we nevertheless believe that it

does!" – Cohen (1994)
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What kind of mess have we got ourselves into?

 as a condition for publication

Publication as a condition for tenure

Novelty as a condition for publication in top-tier journals

Institutionalization of NHST

High public interest in psychological research

Unavoidable role of human motives: fame, recognition, ego

p < .05
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What kind of science have we produced?

 as a primary goal; dichotomous thinking (based on  ): research either

“succeeds” or “fails” to find the expected difference

Publication bias: “Successes” are published, “failures” end up in file drawers

Overestimation of effect size in published work

Underestimation of complexity (why did the failures occur?)

Underestimation of power

Inability to replicate

Settling for vague alternative hypotheses: “We expect a difference”

p < .05 p
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Focusing on  -values

Imagine rolling a die.

What’s the probability you roll a 2?

If you roll the die twice, what’s the probability that you get a 2 at least once?

If you roll the die 5 times, what’s the probability that you get a 2 at least once?

Roll the die enough times, and you'll get a 2 eventually. Significance testing when

the null is true is like rolling a 20-sided die.

p

P(2) = 1/6 = 16.7%

30.6%

59.8%
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False Positive Psychology
Simmons et al. (2011) pointed out that each study is not a single roll of the die.

Instead, each study, even those with a single statistical test, might represent many

rolls of the die.

Researcher degrees of freedom: Decisions that a researcher makes that

change the statistical test.

Examples:

Additional dependent variabiles

Tests with and without covariates

Data peeking (testing effect as data comes in and stopping when

result is significant)
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Each time I see how a decision affected my result, I am rolling the dice again.
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p-hacking

p-hacking: collecting or selecting data or statistical analyses until non-significant

results become significant.

Prior to 2011, this was common practice. In fact, it was often taught as best

practices.

"Explore your data."

"Understand your data."

"Test sensitivity..."

We should recognize now that this inflates Type I error.
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The publication of this, following the claim by Ioannidis (2005) that as many as half

of published findings are false prompted researchers to take a second look at the

"knowns" in our literatures.

If we can demonstrate these "known" effects, then we're ok. Our effects are most

likely true.

And if that had happened, we probably wouldn't have two lectures in this class

dedicated to problems with NHST and how to address them.
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The inability to replicate published research has been viewed as especially

troubling.

This has been a long-standing concern, but the poster child is undoubtedly

"Estimating the reproducibility of psychological science" by the Open Science

Collaboration (Science, 2015, 349, 943).
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Only 36% of the studies were replicated, despite high power and claimed fidelity of

the methods.
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Why is it so hard to replicate?

Poor understanding of context necessary to produce most effects

We do not recognize the boundary conditions of effects especially when

the limiting conditions are kept constant

Incomplete communication of the necessary conditions

Akin to reading just the first few ingredients for a recipe and then trying to

duplicate the dish.
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Why is it so hard to replicate?

Sparse communication fosters belief by others that effects are simpler and easier

to produce than they really are.

The reality is that key elements have been left out:

specific methodological or analytic details

and the tests run before and after the ones that were published.
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BE TRANSPARENT

BE TRANSPARENT

BE TRANSPARENT

BE TRANSPARENT

BE TRANSPARENT

BE TRANSPARENT

BE TRANSPARENT

BE TRANSPARENT

BE TRANSPARENT

BE TRANSPARENT

BE TRANSPARENT

BE TRANSPARENT

BE TRANSPARENT

BE TRANSPARENT

BE TRANSPARENT

BE TRANSPARENT

BE TRANSPARENT

BE TRANSPARENT

BE TRANSPARENT

BE TRANSPARENT

BE TRANSPARENT

BE TRANSPARENT

What can we do?
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R & RMarkdown
Using scripts and .Rmd files is a great way to get you on the path towards open

science!

When you publish a paper, you now will likely need to publish your code. And with

markdown, you can annotate it properly to let the reader know exactly what you

did and why you did it

Don't be your own worst collaborator...
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Back. Up. Your. Code.
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Version control with Git
Git is a version control system. Think Microsoft Track Changes for your code

Allows multiple collaborators to contribute to the same project

If you are going into data science (outside of academia), you 100% need to

know this to get hired

If you are staying in academic research, you 99% need to know this for your

own sanity
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GitHub
GitHub is one site that facilitates the use of Git

Repositories can be private or public -- allows you to share your work with

others

GitHub also plays well with Markdown language (as in RMarkdown)

Pair GitHub with R to make websites

This is where R Projects becomes really handy. Ask me more about them,

and check this out if you're interested: happy git with r
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Next time...
Moving towards relationships with correlations & regression
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