
Layers on Layers on Layers

Last Time
Multipanel Plots

Faceting

Combining separate plots into 1 cohesive �gure

Adding Stu�

Lines

Text

2 / 31

This time
Miscellaneous & Remaining Details

Bar plots & Error bars

Jittering

Adding layers

Misc.

3 / 31

Layers on layers on layers

4 / 31

Bar Plots & Error Bars
Usually bar plots re�ect the mean of a group (or at least some summary

statistic)

Just like vertical/horizontal lines, we'll need to transform our raw data into

summary statistics

If you decide to work with summary stats, you have a few options:

You can calculate the summaries within the ggplot code

Calculate the summaries as their own data.frame, then call it from inside

the ggplot function

I personally suggest the latter

5 / 31

Bar Plots & Error Bars
When it comes to error bars, you need to decide what your bars will re�ect

and calculate the appropriate statistic!

1 standard deviation

95% con�dence intervals

1 standard error of the mean

For now, we'll stick to +/- 1 standard deviation

6 / 31

Bar Plots & Error Bars
Step 1: Summarize your data

summaryStats <- midus %>%

 group_by(age_category, sex) %>%

 summarize(means = mean(physical_health_self),

 sds = sd(physical_health_self)) %>%

 mutate(sdLower = means - sds) %>%

 mutate(sdUpper = means + sds)

summaryStats

A tibble: 6 x 6

Groups: age_category [3]

age_category sex means sds sdLower sdUpper

<fct> <fct> <dbl> <dbl> <dbl> <dbl>

1 young Female 3.78 0.902 2.88 4.68

2 young Male 3.88 0.755 3.13 4.64

3 middle Female 3.63 0.981 2.65 4.61

4 middle Male 3.66 0.981 2.68 4.64

5 old Female 3.40 1.01 2.40 4.41

6 old Male 3.38 1.08 2.30 4.46
7 / 31

Now we can plot

ggplot(data = summaryStats,

 aes(x = age_category,

 y = means,

 fill = sex)) +

 geom_col(position = position_dodge(width=

 geom_errorbar(aes(ymin = sdLower,

 ymax = sdUpper),

 position = position_dodge(wi

 width = .2) +

 theme_classic() +

 scale_fill_brewer(palette = "Accent",

 labels = c("Mulheres",

"Homens")) +

 labs(title = "Error Bars",

 x = "",

 y = "Mean of Physical Health\n(self-

 fill = "Gender")

Bar Plots & Error Bars

8 / 31

Why does this plot look so

weird?

(Hint, how many

observations do we have

in the midus data set?)

ggplot(data = midus,

 aes(x = physical_health_self,

 y = mental_health_self)) +

 geom_point(aes(color = age_category)) +

 theme_classic() +

 scale_color_brewer(palette = "Set2") +

 labs(x = "Physical Health\n(self-reported)

 y = "Mental Health\n(self-reported)"

 title = "What's Wrong With This Graph

 subtitle = "seriously, it's so bad")

Jittering

9 / 31

Jittering
The way we can get around this is with jittering

A jitter is a slight irregular movement, variance, or unsteadiness

Someone is jittery means someone is shaky, usually with nervousness

We can jitter the points on the x-axis to randomly shift them. This let's us see all of

the points.

We are adding in some random variance to make things more visible.

10 / 31

ggplot(data = midus,

 aes(x = physical_health_self,

 y = mental_health_self)) +

 geom_jitter(aes(color = age_category),

 width = 1) +

 theme_classic() +

 scale_color_brewer(palette = "Set2") +

 labs(x = "Physical Health\n(self-reported)

 y = "Mental Health\n(self-reported)"

 title = "Jittering",

 subtitle = "Much better!")

Jittering

11 / 31

Layers on Layers on Layers
By now you've hopefully realized that you can add as many layers as you'd like

to your ggplot

This means you can use multiple shapes or geom_s from the same data on the

same plot

Be careful!

You are layering geoms on top of each other

Order matters depending on what you're doing!

12 / 31

ggplot(data = summaryStats,

 aes(x = age_category,

 y = means,

 group = sex)) +

 geom_point(aes(color = sex,

 shape = sex),

 size = 8) +

 geom_errorbar(aes(ymin = sdLower,

 ymax = sdUpper,

 color = sex),

 width = .1,

 linetype = "dashed") +

 ylim(c(2,5)) +

 geom_line(aes(color = sex)) +

 theme_classic() +

 labs(y = "Mean Physical Health",

 x = "",

 color = "",

 shape = "",

 title = "Line Graph")

Layers on Layers: Line Graph
Example

13 / 31

Order switch

ggplot(data = summaryStats,

 aes(x = age_category,

 y = means,

 group = sex)) +

 geom_errorbar(aes(ymin = sdLower,

 ymax = sdUpper,

 color = sex),

 width = .1,

 linetype = "dashed") +

 ylim(c(2,5)) +

 geom_line(aes(color = sex)) +

 geom_point(aes(color = sex,

 shape = sex),

 size = 8) +

 theme_classic() +

 labs(y = "Mean Physical Health",

 x = "",

 color = "",

 shape = "",

 title = "Line Graph")

Layers on Layers: Line Graph
Example

14 / 31

ggplot(data = midus,

 aes(x = age_category,

 y = BMI)) +

 geom_violin(aes(color = age_category),

 fill = "white") +

 geom_jitter(aes(color = age_category),

 width = .2,

 alpha = .3) +

 theme_classic() +

 labs(title = "Distribution of BMI",

 subtitle = "Per Age Category",

 x = "",

 color = "")

Layers on Layers: Distributions
Example

15 / 31

When combining mutliple

geoms, the order matters!

Look what happens when

you switch geom_violin

and geom_point:

ggplot(data = midus,

 aes(x = age_category,

 y = BMI)) +

geom_jitter(aes(color = age_category)

 width = .2,

 alpha = .3) +

geom_violin(aes(color = age_category)

 fill = "white") +

theme_classic() +

labs(title = "Distribution of BMI",

 subtitle = "Per Age Category",

 x = "",

 color = "")

Layers on Layers: Distributions
Example

16 / 31

Adding a 3rd geom

Not quite right...

This is a great example of jittering!

ggplot(data = midus,

 aes(x = age_category,

 y = BMI)) +

geom_jitter(aes(color = age_category)

 width = .2,

 alpha = .7) +

geom_violin(aes(fill = age_category),

 alpha = .3) +

geom_boxplot(fill = "white",

 width = .2) +

theme_classic() +

labs(title = "Distribution of BMI",

 subtitle = "Per Age Category",

 x = "",

 color = "")

Layers on Layers: Distributions
Example

17 / 31

Where should I look to

�gure out how to �x this?

ggplot(data = midus,

 aes(x = age_category,

 y = BMI)) +

geom_jitter(aes(color = age_category)

 width = .2,

 alpha = .7) +

geom_violin(aes(fill = age_category),

 alpha = .3) +

geom_boxplot(fill = "white",

 width = .2,

 outlier.shape = NA) +

theme_classic() +

labs(title = "Distribution of BMI",

 subtitle = "Per Age Category",

 x = "",

 color = "",

 fill = "")

Layers on Layers: Distributions
Example

18 / 31

Last Remaining Thoughts
Idea of "addition" & "piping"

Exporting plots

Debugging

Fun!

19 / 31

Idea of "addition"
When you use the + at the end of a line, you are literally telling R that you want

to add something -- you're saying "add another layer to the plot"

As a result, you will see a lot of code, especially in the help documentation,

that looks like this:

p <- ggplot(data = midus)

p <- p + geom_point(aes(x = age, y = BMI, color = age_category))

p <- p + labs(title = "Plotting by Addition")

p

20 / 31

Idea of "piping"
You can also "pipe" ggplot2 code into tidyverse code

Notice that the pipe %>% changes into a + when you entire ggplot2 code!

midus %>%

 filter(age_category != "old") %>%

 group_by(age_category) %>%

 summarize(meanHostility = mean(hostility)) %>%

 ggplot(aes(x = age_category, y = meanHostility)) +

 geom_col(aes(fill = age_category))

21 / 31

Exporting
So you've made a plot. Yay! Now you need to get it out of R and into a �le

format you can upload (.png, .ti�, .jpf, .pdf etc.)

Method 1: ggsave() function

It should work most of the time

Simplier, easier

Not as much control

Method 2: Turn on/o� the graphic device

Better if you need something speci�c

Speci�c resolution, compression etc.

Slightly more annoying, but not by much

IMPORTANT: You must consider your working directory! Your plot will save to your working

directory

22 / 31

Method 1: `ggsave()`

ggsave(filename = "plotSaveTest.png",

 width = 7,

 height = 7,

 units = "in")

Note: this uses the last plot you generated

Method 2: graphic device

First, you call the device

Then you plot,

Then you turn the device off

tiff(filename = "plotSave2.tiff",

 width = 7,

 height = 7,

 units = "in",

 res = 300,

 compression = "lzw")

ggplot(data = data,

 aes(x = x, y = y)) +

 geom_point()

dev.off() # Leave parentheses empty.

If you get a pop-up that's like "quartz_o�_screen" or something, that's OK.

Exporting

23 / 31

Debugging
If your code isn't working, and you really think that it should, you might be using a

function that comes from a di�erent package.

Ex: alpha exists in both the ggplot2 and psych packages

If it gives you trouble, just specify the package like this ggplot2::alpha

If you still want to cry 😢 because your plot still isn't giving you what you want, try:

Store the plot as an object

Then look at its inner workings using ggplot_build(plotObject) where

plotObject is the name of your plot

Finally, when looking around the internet for help, make sure that the version

number is kind of close to the one you're working with (usually doesn't need to be

exact). The tidyverse including ggplot2 has been around for some time now,

and they have gone through many iterations over the years.

24 / 31

Fun!
Want to look at pictures of cute puppies in RStudio?

pupR package!

use this line of code to install the package

devtools::install_github("melissanjohnson/pupR")

library(pupR)

pupR()

25 / 31

Fun!
Want to look at pictures of cute puppies in RStudio?

pupR package!

use this line of code to install the package

devtools::install_github("melissanjohnson/pupR")

library(pupR)

pupR(dog_type = "basset")

26 / 31

Fun!
For those of you who get bored and like to procrastinate with remarkably dumb

things, you can make your own XKCD plot in R!

Use the xkcd package and the extrafont packages

library(xkcd)

library(extrafont)

27 / 31

https://xkcd.com/

Fun!
set.seed(1234) #this makes sure the random numbers generated will be the

df <- data.frame(vacc = rnorm(50, sd = .75), #make fake data

 autism = rnorm(50, sd = .55))

xrange <- c(-2,2) # specific for xkcd

yrange <- c(-2,2) # specific for xkcd

ratioxy <- diff(xrange) / diff(yrange) # specific for xkcd

mapping <- aes(x, y, # specific for xkcd

 scale,

 ratioxy,

 angleofspine ,

 anglerighthumerus,

 anglelefthumerus,

 anglerightradius,

 angleleftradius,

 anglerightleg,

 angleleftleg,

 angleofneck)

28 / 31

Fun!
This code makes the little stick �gure dude. You choose the angles of each line. You

can use charts!

dataman <- data.frame(x= 1.75, y=-.4, # specific for xkcd

 scale = .5,

 ratioxy = 1,

 angleofspine = -pi/2 ,

 anglerighthumerus = c((7*pi)/4),

 anglelefthumerus = c((5*pi)/4), # use the charts!!

 anglerightradius = c(pi/6),

 angleleftradius = c((5*pi)/6),

 angleleftleg = 3*pi/2 + pi / 12 ,

 anglerightleg = 3*pi/2 - pi / 12,

 angleofneck = runif(1, 3*pi/2-pi/10, 3*pi/2+pi/10)

π

29 / 31

Fun!
Finally, something you know -- ggplot!

ggplot(df, aes(x = vacc, y = autism, group = 1)) +

 geom_point() +

 geom_smooth(color = "red", method = "lm", se = FALSE) +

 xkcdaxis(xrange, yrange) +

 xkcdman(mapping, dataman) +

 annotate("text", x=0, y = -1.75,

 label = "The relationship between vaccines

 and autism is as flat as the earth",

 family="Humor Sans", size = 3) +

 labs(y = "Autism",

 x = "Vaccines",

 title = "Which conspiracy theory\nshould you believe??") +

 theme_xkcd() +

 theme(text = element_text(family = "Humor Sans", size = 11))

30 / 31

Fun!
And here's the actual plot

31 / 31

