
Multipanel Figures & Adding To
Your Plot

Last Time
So much customization!

Color palettes

Themes

Manually changing things

2 / 38

This time
Multipanel Plots

Faceting

Combining separates into 1

Adding Stuff

Lines

Text

3 / 38

Faceting
Faceting lets you break up your plot into multiple sub-plots. There are two main

types:

1. facet_grid

2. facet_wrap

For both of these, we will read the tilde (~) as the word "by"...

4 / 38

facet_grid

This is especially great when you have multiple factors to separate your graph on.

Like the name implies, facet_grid is going to make a grid. Just like a matrix, the

left is the rows and right is the columns (i.e., 2x3 matrix = 2 rows, 3 columns). You

can put your factor on either side, but that will change the layout of your grid! For

example:

~ age_category is read as "by age category", and is in the column position.

There are 3 levels of the age_category factor. Therefore, the result of ~

age_category is a 1x3 grid.

age_category ~ is read as "age category by". This doesn't work! You need

something else to finish your "sentence". To indicate that you do not want to

facet by any additional factor, use a period (.). So the correct syntax for

faceting age_category in the row position is age_category ~ .. The result

will be a 3x1 grid.

Let's see this in action...

5 / 38

Facet by age_category

ggplot(data = midus,

 aes(x = BMI,

 y = life_satisfaction)) +

 geom_point(aes(color = age_category,

 shape = age_category)) +

 labs(x = "Body Mass Index (BMI)",

 y = "Life Satisfaction",

 title = "Facet_Grid Example",

 subtitle = "facet along columns") +

 facet_grid(~ age_category)

facet_grid

6 / 38

Notice how the x-axis was the

same for each of the 3 facets?

What if we let them be specific

to that particular facet?

ggplot(data = midus,

 aes(x = BMI,

 y = life_satisfaction)) +

 geom_point(aes(color = age_category,

 shape = age_category)) +

 labs(x = "Body Mass Index (BMI)",

 y = "Life Satisfaction",

 title = "Facet_Grid Example",

 subtitle = "facet along columns") +

 facet_grid(~ age_category,

 scales = "free_x")

facet_grid

7 / 38

Facet age_category by .

ggplot(data = midus,

 aes(x = BMI,

 y = life_satisfaction)) +

 geom_point(aes(color = age_category,

 shape = age_category)) +

 labs(x = "Body Mass Index (BMI)",

 y = "Life Satisfaction",

 title = "Facet_Grid Example",

 subtitle = "facet along columns") +

 facet_grid(age_category ~ .)

facet_grid

8 / 38

Faceting based on 2 variables

9 / 38

But first... Side track
What happens when a categorical variable is treated continuously, and not as a

factor?

The following creates a new variable called session and is scored as 1 and 2. We

will make sure to treat this as a numeric variable

session <- c(rep(c(1, 2), times = 935))

midus["session"] <- rep(session, times = 2)

midus$session <- as.numeric(midus$session)

head(midus$session)

[1] 1 2 1 2 1 2

10 / 38

If we plot this, check out the

legend and colorings...

ggplot(data = midus,

 aes(x = hostility,

 y = life_satisfaction)) +

 geom_point(aes(color = session))

But first... Side track

11 / 38

But first... Side track
If you are working with categorical variables, it is strongly recommended that you

tell R to treat it as a factor -- don't skimp on this step!

It is easier to keep categorical variables as words, rather than numeric codes. So

instead of 1 and 2, let's change the scores to be session1 and session2 for our

new session variable.

midus$session <- factor(midus$session,

 labels = c("session1", "session2"))

class(midus$session)

[1] "factor"

12 / 38

Much better!

ggplot(data = midus,

 aes(x = hostility,

 y = life_satisfaction)) +

 geom_point(aes(color = session))

But first... Side track

13 / 38

Session x Age Category:

ggplot(data = midus,

 aes(x = hostility,

 y = life_satisfaction)) +

 geom_point(aes(color = age_category,

 shape = age_category)) +

 labs(x = "Hostility",

 y = "Life Satisfaction",

 title = "Facet_Grid Example") +

 facet_grid(session ~ age_category)

Faceting based on 2 variables

14 / 38

Age Category x Session:

ggplot(data = midus,

 aes(x = hostility,

 y = life_satisfaction)) +

 geom_point(aes(color = age_category,

 shape = age_category)) +

 labs(x = "Hostility",

 y = "Life Satisfaction",

 title = "Facet_Grid Example") +

 facet_grid(age_category ~ session)

Faceting based on 2 variables

15 / 38

facet_wrap

This basically creates a ribbon that will just continue on to the next row when

ready.

This is useful for when you have categorical variables, but they don’t necessarily

need to be in a grid or matrix format.

For instance, if one of the facet_grid cells would be empty, you probably don’t

want to show an empty plot (a plot with no points/shapes – you’d rather it be just

blank space).

This does not follow the rows by columns syntax – it will always just go to the next

row.

16 / 38

Since there are only 3 levels,

by default it will look just like

facet_grid

ggplot(data = midus,

 aes(x = hostility,

 y = life_satisfaction)) +

 geom_point(aes(color = age_category,

 shape = age_category)) +

 labs(x = "Hostility",

 y = "Life Satisfaction",

 title = "Facet_Wrap Example") +

 facet_wrap(~ age_category)

facet_wrap

17 / 38

But now, let's say there should

only be 2 columns. What

happens to our third subplot?

ggplot(data = midus,

 aes(x = hostility,

 y = life_satisfaction)) +

 geom_point(aes(color = age_category,

 shape = age_category)) +

 labs(x = "Hostility",

 y = "Life Satisfaction",

 title = "Facet_Wrap Example") +

 facet_wrap(~ age_category, ncol = 2)

facet_wrap

18 / 38

We can facet on 2 variables

with facet_wrap, but now

we're adding rather than

making a true grid.

ggplot(data = midus,

 aes(x = hostility,

 y = life_satisfaction)) +

 geom_point(aes(color = age_category,

 shape = age_category)) +

 labs(x = "Hostility",

 y = "Life Satisfaction",

 title = "Facet_Wrap Example") +

 facet_wrap(~ age_category + session, ncol

facet_wrap

19 / 38

Arranging Multiple Plots
Faceting is great because you're making the same plot but carved up based on

some criteria.

Now let's say you have 3 completely independent plots (not subplots!) that you

want to arrange into a cohesive figure. You're arranging a grid of plots. To do this,

we will use the ggarrange() function from the ggpubr package. If you do not already have this

package installed, please do so now.

Importantly, you need to STORE these plots into your environment first (which

means the plot won't immediately appear when you run the code). Then you can

arrange the plots based on the names you assigned them.

20 / 38

Arranging Multiple Plots
Let's first create our plots. If we want a single legend for every plot (e.g., the colors

are the same for all plots), then make sure you have coded this accordingly.

library(ggpubr)

plot A - a scatter plot

plotA <- ggplot(data = midus, aes(x = hostility, y = life_satisfaction))

 geom_point(aes(color = age_category)) +

 theme_minimal() +

 labs(title = "Scatter Plot")

plot B - histogram

plotB <- ggplot(data = midus, aes(x = life_satisfaction)) +

 geom_histogram(binwidth = .1, aes(fill = age_category), alpha = .7) +

 theme_minimal() +

 labs(title = "Histogram")

plot C - violin plot

plotC <- ggplot(data = midus, aes(x = age_category, y = life_satisfactio

 geom_violin(aes(fill = age_category)) +

 theme_minimal() +

 labs(title = "Violin Plot")
21 / 38

Now that we created the 3

plots, let's arrange them with

ggarrange()

ggarrange(plotA, plotB, plotC,

 nrow = 2, ncol = 2,

 common.legend = TRUE,

 labels = c("A", "B", "C"),

 legend = "bottom")

Arranging Multiple Plots

22 / 38

Arranging Multiple Plots
This looks fine, but it's kind of smushed.

What you actually want to see is the bottom biolin plot taking up the entire 2

columns (e.g., spanning the entire width of this newly created plot).

It would be even better if the violin plots had the distributions stacked vertically,

rather than horizontally.

Let's do it!

23 / 38

Arranging Multiple Plots
To change the violin plot, all we need to do is flip the coordinates.

plotCNew <- ggplot(data = midus, aes(x = age_category, y = life_satisfaction)) +

 geom_violin(aes(fill = age_category)) +

 theme_minimal() +

 labs(title = "Violin Plot") +

 coord_flip()

plotCNew

24 / 38

Arranging Multiple Plots
Ok, that looks good.

Now we are going to nest 2 ggarrange() functions:

The 1st (inner most) ggarrange will combine plots A & B into a single figure.

Here, we want 1 row, 2 columns.

The 2nd (outer most) ggarrange will take the one from above, and combine it

with our newly created flipped violin plot. We will keep this as 1 column, and 2

rows.

This means that C has to take up the full width

25 / 38

ggarrange(ggarrange(plotA, plotB,

 ncol = 2,

 labels = c("A", "B"),

 legend = "none"),

 plotCNew,

 nrow = 2,

 common.legend = TRUE,

 legend = "bottom",

 labels = c("", "C"))

Arranging Multiple Plots

26 / 38

Arranging Plots
A final note about ggarrange():

It does not like it when either the ncol = or nrow = parameters are set to

equal 1.

If you want a plot with 1 column and 3 rows, do NOT specify ncol = 1.

Instead, use nrow = 3.

27 / 38

Adding Stuff
Lines

Text

28 / 38

Horizontal and Vertical Lines
Use geom_vline or geom_hline

You'll need to specify an x or y intercept, respectively

This intercept is based on the actual scales on the graph!

29 / 38

ggplot(data = midus,

 aes(x = BMI,

 y = self_esteem)) +

 geom_point(aes(color = age_category)) +

 labs(x = "Body Mass Index (BMI)",

 y = "Self-Esteem",

 title = "Vertical Mean Lines for BMI

 geom_vline(xintercept = mean(midus$BMI)

 color = "red")

Horizontal and Vertical Lines

30 / 38

By groups?
What if we wanted to make a vertical line that reflects the mean of some variable

per level of a categorical variable?

We need to create a data.frame that contains the means for each level of the

factor, store this information in an object, and then call that object from within the

plot.

This is where tidyverse is extremely useful!

31 / 38

By groups
meansHostility <- midus %>%

 group_by(age_category) %>%

 summarize(xint = mean(hostility))

meansHostility

A tibble: 3 x 2

age_category xint

<fct> <dbl>

1 young 6.26

2 middle 5.90

3 old 5.49

32 / 38

ggplot(data = midus,

 aes(x = hostility,

 y = self_esteem)) +

 geom_point(aes(color = age_category),

 alpha = .3) +

 labs(x = "Hostility",

 y = "Self-Esteem",

 title = "Vertical Lines for Mean Host

 subtitle = "Per Level of Age Category

 theme_classic() +

 scale_color_brewer(palette = "Dark2") +

 geom_vline(data = meansHostility,

 aes(xintercept = xint,

 color = age_category,

 linetype = age_category))

By groups

33 / 38

Regression Lines
For simple linear regression, you only need to add geom_smooth

By default, it will add a Loess line -- usually kinda curvy

For the most part, you'll want to specify that it's a linear model using the

method = "lm" argument

For complex interactions from multiple regressions, check out the ggpredict()

function from the ggeffects package (beyond our scope, sadly).

34 / 38

ggplot(data = midus,

 aes(x = hostility,

 y = self_esteem)) +

 geom_point() +

 theme_classic() +

 labs(title = "Regression Plot",

 subtitle = "Simple Linear",

 x = "Hostility",

 y = "Self Esteem") +

 geom_smooth(method = "lm")

ggplot(data = midus,

 aes(x = hostility,

 y = self_esteem)) +

 geom_point() +

 theme_classic() +

 labs(title = "Regression Plot",

 subtitle = "Simple Linear",

 x = "Hostility",

 y = "Self Esteem") +

 geom_smooth(method = "lm", se = FALSE)

Regression Lines

35 / 38

Adding text
Sometimes you might want to add something like an value or a correlation

coefficient or some sort of text to your plot, usually in a corner. We can do that!

Let's use a very nerdy stats example. The coefficient of a simple linear regression

of 2 standardized variables is equal to the correlation of those variables.

R2

36 / 38

get correlation

corCoef <- round(x = cor(midus$self_esteem,

 midus$life_satisfac

 digits = 2)

ggplot(data = midus,

 aes(x = scale(self_esteem),

 y = scale(life_satisfaction))) +

 geom_point() +

 geom_smooth(method = "lm",

 se = FALSE,

 color = "red") +

 theme_classic() +

 labs(title = "Annotating Plots",

 x = "Self-Esteem",

 y = "Life Satisfaction") +

 annotate(geom = "text",

 x = 1,

 y = -5,

 label = paste0("r = ", corCoef))

Adding text

37 / 38

Next up...
Error bars

Jittering

Adding layers

Debugging plots

38 / 38

