
Customize Your Plots

Last time
ggplot is built on LAYERS

Layer 1: ggplot(data = , aes(x = , y =)) +

Layer 2: geom_something(size = , aes(color =))

Layer 3: labs(x = "x-axis label", y = "y-axis lable")

geom_ controls the shape of the data points

geom_density for density plots

geom_point for scatter plots

geom_bar for bar plots, etc...

Aesthetics control something in that particular layer

If it comes from the data, wrap it inside aes()

If not, no need for the aes()

Aesthetics we looked at: size, color, fill, alpha

2 / 38

Today
Customizing our plots

Color palettes

Themes

Manually changing things in your plot

3 / 38

Color Palettes
These can be very useful:

You have a TON of data and want to maximize the differences between colors

You want your colors to scale from dark to light (or vice versa)

You want to use colors that are colorblind friendly

You're bored of the default ggplot2 colors

The most popular collection of palettes comes from a package called

RColorBrewer. If you don't already have this installed, please do so now.

4 / 38

RColorBrewer Palettes
All of the color palettes available through RColorBrewer (and to view this

yourself):

library(RColorBrewer)

display.brewer.all()

5 / 38

RColorBrewer Palettes
You don't have to stare at all of these. See if they fit your specifications. For

example:

find palettes with 10 colors that are color blind friendly

display.brewer.all(n = 10, colorblindFriendly = TRUE)

6 / 38

ggplot(data = empire,

 aes(x = name,

 y = mass)) +

 geom_col(aes(fill = name)) +

 scale_fill_brewer(palette = "PRGn")

RColorBrewer Palettes
Once you know the name of the palette you want to use, you add a LAYER with the

info

7 / 38

RColorBrewer Palettes
The format is scale_SOMETHING_brewer

SOMETHING needs to match the aesthetic

We used fill, so it's scale_fill_brewer

If you used color, it would be scale_color_brewer

8 / 38

Want more color palettes?
There are seriously TONS of color palettes available to you. Some are great, and

some are kind of ridiculous. Examples:

Wes Anderson themed palettes (check it out here)

The package ggsci contains color palettes for scientific journals & sci-fi TV

shows. See here.

For a complete list, check out this Github repo.

9 / 38

https://github.com/karthik/wesanderson#wes-anderson-palettes
https://cran.r-project.org/web/packages/ggsci/vignettes/ggsci.html#futurama
https://github.com/EmilHvitfeldt/r-color-palettes

No matter what, you'll need to

install the packages that

contain the palettes

This package includes color palettes

for scientific journals & sci fi shows!

install.packages("ggsci")

library(ggsci)

ggplot(data = empire,

 aes(x = name,

 y = mass)) +

 geom_col(aes(fill = name)) +

 scale_fill_futurama() +

 labs(title = "Good News, Everyone!")

Always check the help documentation

if you don't know how to use it!

Non-RColorBrewer palettes

10 / 38

Themes
Themes change the entire look of your plot. Most of the themes you need are built

into the main ggplot2 package.

If you want more themes, check out:

the ggthemes package

the ggthemer package

My fav: to make plots in the style of XKCD comics, see here

We will stick to the basic themes just so you can get a sense of things.

11 / 38

https://xkcd.r-forge.r-project.org/

Side Note
Before we get going, let's create the same age_category variable that we made in

the 09: Stats & Plot Practice

midus$age_category <- cut(x = midus$age,

 breaks = c(28, 40, 60, 84),

 labels=c("young", "middle", "old"),

 include.lowest = TRUE)

12 / 38

http://127.0.0.1:7467/practice/09-practice

No specified
theme

The default for ggplot2 plots

ggplot(data = midus,

 aes(x = heart_father,

 y = life_satisfaction)) +

 geom_violin(aes(fill = heart_father)) +

 labs(x = "Dad Heart Attack?",

 y = "Life Satisfaction",

 title = "No Set Theme")

Themes

13 / 38

Black & White
theme

ggplot(data = midus,

 aes(x = heart_father,

 y = life_satisfaction)) +

 geom_violin(aes(fill = heart_father)) +

 labs(x = "Dad Heart Attack?",

 y = "Life Satisfaction",

 title = "Black & White Theme") +

 theme_bw()

Themes

14 / 38

Black & White
theme

You can still modify the

theme. For example, let's

change the baseline font size

to be much smaller

ggplot(data = midus,

 aes(x = heart_father,

 y = life_satisfaction)) +

 geom_violin(aes(fill = heart_father)) +

 labs(x = "Dad Heart Attack?",

 y = "Life Satisfaction",

 title = "Black & White Theme") +

 theme_bw(base_size = 7)

Themes

15 / 38

Classic theme

ggplot(data = midus,

 aes(x = heart_father,

 y = life_satisfaction)) +

 geom_violin(aes(fill = heart_father)) +

 labs(x = "Dad Heart Attack?",

 y = "Life Satisfaction",

 title = "Classic Theme") +

 theme_classic()

Themes

16 / 38

Dark theme

ggplot(data = midus,

 aes(x = heart_father,

 y = life_satisfaction)) +

 geom_violin(aes(fill = heart_father)) +

 labs(x = "Dad Heart Attack?",

 y = "Life Satisfaction",

 title = "Dark Theme") +

 theme_dark()

Themes

17 / 38

Void theme

ggplot(data = midus,

 aes(x = heart_father,

 y = life_satisfaction)) +

 geom_violin(aes(fill = heart_father)) +

 labs(x = "Dad Heart Attack?",

 y = "Life Satisfaction",

 title = "Void Theme") +

 theme_void()

Themes

18 / 38

The Nitty Gritty of Themes
What if you like a theme, but you still want to make changes? For example, you like

the black & white theme, but you still want to:

get rid of major grid lines

remove the title from your legend

center the title

make a black box around your legend, and fill it with the color gray

To do this, you first define your theme, then add another theme() layer that

includes arguments with your specific changes. You pick an argument you want to

change, set it equal to one of the following 4 options, and finally put your changes

inside one of these 4 options. You can think of these as "wrappers":

element_text

element_rect

element_line

element_blank

This gives us an overwhelming amount of flexibility. GOOGLE IS YOUR FRIEND!

19 / 38

without changes

ggplot(data = midus,

 aes(x = heart_father,

 y = life_satisfaction)) +

 geom_violin(aes(fill = heart_father)) +

 labs(x = "Dad Heart Attack",

 y = "Life Satisfaction",

 title = "Black and White Theme") +

 theme_bw()

WITH changes

ggplot(data = midus,

 aes(x = heart_father,

 y = life_satisfaction)) +

 geom_violin(aes(fill = heart_father)) +

 labs(x = "Dad Heart Attack",

 y = "Life Satisfaction",

 title = "Black and White Theme") +

 theme_bw() +

 theme(panel.grid.major = element_line(color = NA),

 legend.title = element_blank(),

 plot.title = element_text(hjust = 0.5),

 legend.background = element_rect(color = "black

 fill = "gray")

Nitty Gritty of Themes

20 / 38

Manually Changing Things
As you can tell, there are many ways to change aspects of ggplot2 plots. Next up

is a selection of changes that are fairly common. To find the exact values for

something, use Google!

"change shapes in ggplot2" -- good search

"shapes plot R" -- bad search

The random assortment:

Manually set the shape of points in a scatterplot

Manually set the color/fill

Grayscale

Changing the location, title, and labels of the Legend

Change scale of plot axes

Change angle of text labels

21 / 38

Shapes take on certain numbers

Manually setting shapes, colors,
and fills

Colors & fills

Can take a name like "cornflowerblue" (see here for more preset

colors)

Can take a hex code

6 digit alphanumeric

always leads with a #

Hex code of cornflowerblue = #6495ed

22 / 38

http://sape.inf.usi.ch/quick-reference/ggplot2/colour
http://sape.inf.usi.ch/quick-reference/ggplot2/colour

ggplot(data = midus,

 aes(x = self_esteem,

 y = life_satisfaction)) +

 geom_point(aes(color = age_category,

 shape = age_category)) +

 labs(x = "Self-Esteem",

 y = "Life Satisfaction",

 title = "Manually Setting Shapes") +

 scale_shape_manual(values = c(9,10,11))

The variable "age_category"

has 3 levels: young, middle,

old. So if you want to manually

set the shapes for the 3 levels,

you need to supply 3 values!

Manually setting shapes, colors,
and fills

23 / 38

ggplot(data = midus,

 aes(x = self_esteem,

 y = life_satisfaction)) +

 geom_point(aes(color = age_category,

 shape = age_category)) +

 labs(x = "Self-Esteem",

 y = "Life Satisfaction",

 title = "Manually Setting Shapes") +

 scale_shape_manual(values = c(9,10,11)) +

 scale_color_manual(values = c("seagreen4"

"darkorchid

"#FF6700"))

Same thing for colors!

Manually setting shapes, colors,
and fills

24 / 38

ggplot(data = midus,

 aes(x = self_esteem,

 y = life_satisfaction)) +

 geom_boxplot(aes(fill = age_category)) +

 labs(x = "Self-Esteem",

 y = "Life Satisfaction",

 title = "All Grey") +

 theme_classic() +

 scale_fill_grey(start = 0, end = 0.8,

 labels = c("young",

"middle",

"old"))

Grayscale
Many academic journals charge more money for color printing (which is dumb), so

you might want everything to be on some form of grayscale. 0 = black, 1 = white.

25 / 38

The title of your legend will be the

name of your variable. If you have

something like age_category, that

doesn't look as nice as a formatted

title. You can change the variable

name within your dataset. But that

can often have unintended

consequences.

If all you're doing is changing the title

of the legend, this is probably the

simplest method:

ggplot(data = midus,

 aes(x = self_esteem,

 y = life_satisfaction)) +

 geom_point(aes(color = age_category,

 shape = age_category),

 alpha = .5) +

 labs(x = "Self-Esteem",

 y = "Life Satisfaction",

 title = "Legend Change",

 color = "Age (by group)",

 shape = "Age (by group)")

Changing the legend

26 / 38

If you want to change other

aspects of the legend, like the

location and the labels...

ggplot(data = midus,

 aes(x = self_esteem,

 y = life_satisfaction)) +

 geom_point(aes(color = age_category,

 shape = age_category),

 alpha = .5) +

 labs(x = "Self-Esteem",

 y = "Life Satisfaction",

 title = "Legend Change Part 2") +

 scale_color_discrete(name = "Age (by group

 labels = c("YOUNG",

"MID",

"OLD")) +

 theme(legend.position = "bottom")

Changing the legend

27 / 38

To get rid of a legend (which

you often will do if you have 2

aesthetics mapped), set the

appropriate guide = FALSE

ggplot(data = midus,

 aes(x = self_esteem,

 y = life_satisfaction)) +

 geom_point(aes(color = age_category,

 shape = age_category),

 alpha = .5) +

 labs(x = "Self-Esteem",

 y = "Life Satisfaction",

 title = "Legend Change Part 2") +

 scale_color_discrete(name = "Age (by group

 labels = c("YOUNG",

"MID",

"OLD")) +

 theme(legend.position = "bottom") +

 scale_shape(guide = FALSE)

Changing the legend

28 / 38

Both legends gone...

ggplot(data = midus,

 aes(x = self_esteem,

 y = life_satisfaction)) +

 geom_point(aes(color = age_category,

 shape = age_category),

 alpha = .5) +

 labs(x = "Self-Esteem",

 y = "Life Satisfaction",

 title = "Legend Change Part 2") +

 scale_color_discrete(guide = FALSE) +

 scale_shape(guide = FALSE)

Changing the legend

29 / 38

ggplot(data = midus,

 aes(x = self_esteem)) +

 geom_density(aes(fill = heart_self),

 alpha = .5) +

 labs(x = "Self-Esteem",

 y = "Density",

 title = "Coord Change",

 subtitle = "Default") +

 theme_classic()

ggplot(data = midus,

 aes(x = self_esteem)) +

 geom_density(aes(fill = heart_self),

 alpha = .5) +

 labs(x = "Self-Esteem",

 y = "Density",

 title = "Coord Change",

 subtitle = "Adjusted Coordinates") +

 theme_classic() +

 xlim(c(0, 80))

Changing the scales of axes
You might want to adjust the scale of your axes to best reflect your data

30 / 38

Axis labels
Sometimes, you can get really cramped axis labels. There are different ways to deal

with this.

2 key things to know is that you can adjust vertically and horizontally:

hjust = horizontal justification. 0 = left-justified, 1 = right-justified, .5 = center-

justified

vjust = vertical justification. 0 = bottom, 1 = top, .5 = center

BUT, if you change the angle on something, the horizontal/vertical thing gets really

confusing. Just try both until you get what you want.

(Note: going to switch back to the empire data.frame for a better example)

31 / 38

Let's change only the angle of

the labels...

ggplot(data = empire,

 aes(x = name,

 y = mass)) +

 geom_col(aes(fill = name)) +

 scale_fill_futurama(guide = FALSE) +

 labs(title = "Good News, Everyone!",

 subtitle = "Angle Only") +

 theme(axis.text.x = element_text(angle = 9

Axis labels

32 / 38

If you stare closely, you'll

notice that the names don't

line up with the tic marks!

Even though this would

normally be a horizontal

alignment, you changed the

angle of the text to 90...so we

use the vertical alignment

instead!

ggplot(data = empire,

 aes(x = name,

 y = mass)) +

 geom_col(aes(fill = name)) +

 scale_fill_futurama(guide = FALSE) +

 labs(title = "Good News, Everyone!",

 subtitle = "Angle & Alignment") +

 theme(axis.text.x = element_text(angle = 9

 vjust =

Axis labels

33 / 38

What if we want the last letter

of every label to be right up

against the tic mark?

Normally, this would be

vertical alignment. But since

we're flipped, it's not

horizontal alignment.

ggplot(data = empire,

 aes(x = name,

 y = mass)) +

 geom_col(aes(fill = name)) +

 scale_fill_futurama(guide = FALSE) +

 labs(title = "Good News, Everyone!",

 subtitle = "Angle & Alignment") +

 theme(axis.text.x = element_text(angle = 9

 vjust =

 hjust = 1

Axis labels

34 / 38

How about other angles? You

just need to play around until

you find one you like!

ggplot(data = empire,

 aes(x = name,

 y = mass)) +

 geom_col(aes(fill = name)) +

 scale_fill_futurama(guide = FALSE) +

 labs(title = "Good News, Everyone!",

 subtitle = "Angle & Alignment") +

 theme(axis.text.x = element_text(angle = 4

 vjust = 1

 hjust = 1

Axis labels

35 / 38

As of the most recent version

of ggplot2 (v.3.3.0), you can

now stagger the axis labels so

they don't overlap!

Without adjusting anything,

notice how some of the labels

overlap

ggplot(data = empire,

 aes(x = name,

 y = mass)) +

 geom_col(aes(fill = name)) +

 scale_fill_futurama(guide = FALSE) +

 labs(title = "Good News, Everyone!",

 subtitle = "Overlapping Labels")

Axis labels

36 / 38

As of the most recent version

of ggplot2 (v.3.3.0), you can

now stagger the axis labels so

they don't overlap!

With adjustment, we can fix

that by "dodging" the labels!

ggplot(data = empire,

 aes(x = name,

 y = mass)) +

 geom_col(aes(fill = name)) +

 scale_fill_futurama(guide = FALSE) +

 labs(title = "Good News, Everyone!",

 subtitle = "Overlapping Labels") +

 scale_x_discrete(guide = guide_axis(n.dodg

Axis labels

37 / 38

Next up...
Multipanel Figures

Adding things like best fit lines, text etc.

38 / 38

