
Tidyr

Recap
tidyverse is an opinionated collection of pacakges

All packages within it's ecosystem use the same syntax:

%>% pipe operators at the end of the line read as "and then"

"I took my original data.frame %>%

I kept only 5 out of the original 20 columns %>%

I added a new column that was based on the 2nd column %>%

I grouped the data based on a categorical column %>%

I got descriptive statistics per level of the categorical var"

2 / 19

Recap
tidyverse is an opinionated collection of pacakges

All packages within it's ecosystem use the same syntax:

%>% pipe operators at the end of the line read as "and then"

originalData %>%

select(1:5) %>%

mutate(newVar = sqrt(var1)) %>%

group_by(factorVar) %>%

summarize(meanVar = mean(var))

3 / 19

This time
Functions from the tidyr package (but DON'T memorize which functions come

from which packages!)

Go from long to wide format

Split columns and combine them

Missing data

4 / 19

https://swcarpentry.github.io/r-novice-gapminder/14-tidyr/

Subject Time1 Time2 Time3

1 1 0.2 0.4 0.3

2 2 0.8 0.9 0.7

3 3 1.3 1.0 1.1

Subject TimePoint Score

1 1 1 0.2

2 2 1 0.8

3 3 1 1.3

4 1 2 0.4

5 2 2 0.9

6 3 2 1.0

7 1 3 0.3

8 2 3 0.7

9 3 3 1.1

Long vs. Wide data
Long data - Each column is a variable and each row is an observation. Each row

does NOT need to be a unique participant.

Wide data - Each row is a particular participant, and columns can contain multiple

observations for the same data.

5 / 19

https://swcarpentry.github.io/r-novice-gapminder/14-tidyr/

Long vs. Wide data
For the most part, you want your data to be in the long format

Especially for plotting in ggplot2!

(some analyses, like reliability, require the wide format, but most stick with

long)

However, we often receive data in the wide format. It is useful to be able to go

between the two. tidyr makes this easy with:

pivot_wider() to go from long to wide

pivot_longer() to go from wide to long

6 / 19

pivot_wider() function
This function takes in long data and makes it wide. Important arguments:

names_from = which columns to get the name of the output column.

values_from = which columns to get the value of the output column.

7 / 19

pivot_wider() function
Let's take the example data.frame I showed earlier. Since it's completely arbitrary,

I'm going to call it generic

generic

Subject TimePoint Score

1 1 1 0.2

2 2 1 0.8

3 3 1 1.3

4 1 2 0.4

5 2 2 0.9

6 3 2 1.0

7 1 3 0.3

8 2 3 0.7

9 3 3 1.1

8 / 19

pivot_wider() function
This generic data.frame is in the long format. To make it into the wide format,

let's use pivot_wider()

wideGeneric <- generic %>%

 pivot_wider(names_from = TimePoint,

 values_from = Score)

wideGeneric

A tibble: 3 x 4

Subject `1` `2` `3`

<dbl> <dbl> <dbl> <dbl>

1 1 0.2 0.4 0.3

2 2 0.8 0.9 0.7

3 3 1.3 1 1.1

9 / 19

pivot_wider() function
Sometimes, it's a bit more complicated. Let's add some more variables to generic

to test this out.

hairColor factor with 2 levels (brown & blonde)

happiness scale of 1 to 10 measured at each time point

generic <- generic %>%

 mutate(hairColor = rep(c("brown", "blonde", "blonde"), times = 3),

 happiness = c(10, 2, 6, 9, 2, 5, 10, 3, 4))

generic

Subject TimePoint Score hairColor happiness

1 1 1 0.2 brown 10

2 2 1 0.8 blonde 2

3 3 1 1.3 blonde 6

4 1 2 0.4 brown 9

5 2 2 0.9 blonde 2

6 3 2 1.0 blonde 5

7 1 3 0.3 brown 10

8 2 3 0.7 blonde 3

9 3 3 1.1 blonde 4
10 / 19

pivot_wider() function
Now, let's say we want each time point's Score and happiness variables in the

wide format...

wideGenericMore <- generic %>%

 pivot_wider(names_from = TimePoint,

 values_from = c(Score, happiness))

wideGenericMore

A tibble: 3 x 8

Subject hairColor Score_1 Score_2 Score_3 happiness_1 happiness_2 happines

<dbl> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <d

1 1 brown 0.2 0.4 0.3 10 9

2 2 blonde 0.8 0.9 0.7 2 2

3 3 blonde 1.3 1 1.1 6 5

11 / 19

pivot_longer() function
The exact opposite of pivot_wider() is pivot_longer. This takes a wide

data.frame and makes it into a long data.frame. Arguments are now names_to =

and values_to =. You also need to include a cols = argument to say which

columns you want into the longer format.

Before doing this with code, here's a schematic that might be helpful:

https://swcarpentry.github.io/r-novice-gapminder/14-tidyr/
12 / 19

https://swcarpentry.github.io/r-novice-gapminder/14-tidyr/

pivot_longer() function
Let's keep going with our current example, starting from wideGenericMore

longGeneric <- wideGenericMore %>%

 pivot_longer(cols = 3:8,

 names_to = "valueType",

 values_to = "allScores")

longGeneric

A tibble: 18 x 4

Subject hairColor valueType allScores

<dbl> <chr> <chr> <dbl>

1 1 brown Score_1 0.2

2 1 brown Score_2 0.4

3 1 brown Score_3 0.3

4 1 brown happiness_1 10

5 1 brown happiness_2 9

6 1 brown happiness_3 10

7 2 blonde Score_1 0.8

8 2 blonde Score_2 0.9

9 2 blonde Score_3 0.7

10 2 blonde happiness 1 2
13 / 19

pivot_longer() function
For both of these pivot functions, you can use the - (minus) sign to say

"everything except this column". For example:

longGeneric <- wideGenericMore %>%

 pivot_longer(cols = c(-hairColor, -Subject),

 names_to = "valueType",

 values_to = "allScores")

longGeneric

A tibble: 18 x 4

Subject hairColor valueType allScores

<dbl> <chr> <chr> <dbl>

1 1 brown Score_1 0.2

2 1 brown Score_2 0.4

3 1 brown Score_3 0.3

4 1 brown happiness_1 10

5 1 brown happiness_2 9

6 1 brown happiness_3 10

7 2 blonde Score_1 0.8

8 2 blonde Score_2 0.9

9 2 blonde Score_3 0.7
14 / 19

The pivot functions
Some things to notice:

In pivot_longer, the arguments take in strings (aka, need quotations!).

That's because you need to tell R what to name something.

In pivot_wider, the arguments take in variable names that already exist. So

you do not need to wrap those in quotation marks.

These are the types of functions that I mess up ALL. THE. TIME. Use your

History tab!

15 / 19

separate() function
In our latest iteration, longGeneric, we have a column called valueType where it

is a name, then an underscore (_), and a number, ex: Score_1.

We can use separate() to make split valueType into 2 separate columns...1 for

the Score and another for the 1.

longGeneric %>%

 separate(col = valueType,

 into = c("variableName", "timePoint"))

A tibble: 18 x 5

Subject hairColor variableName timePoint allScores

<dbl> <chr> <chr> <chr> <dbl>

1 1 brown Score 1 0.2

2 1 brown Score 2 0.4

3 1 brown Score 3 0.3

4 1 brown happiness 1 10

5 1 brown happiness 2 9

6 1 brown happiness 3 10

7 2 blonde Score 1 0.8

8 2 blonde Score 2 0.9

9 2 blonde Score 3 0 7
16 / 19

separate() function
Note that I did not specify that I wanted to separate based on the underscore.

When it is simple like this, R can automatically detect it.

But if it's a bit trickier, you can specify how to separate in the sep = argument.

For example, sep = ": " if you want to separate on a colon + space.

17 / 19

unite() function
The opposite of separate is unite(). For instance, let's say we want to create a

variable called bogus that looks something like brown: Score or blonde:

happiness. The separator is a colon + space.

longGeneric %>%

 unite(col = "bogus",

 hairColor, valueType,

 sep = ": ")

A tibble: 18 x 3

Subject bogus allScores

<dbl> <chr> <dbl>

1 1 brown: Score_1 0.2

2 1 brown: Score_2 0.4

3 1 brown: Score_3 0.3

4 1 brown: happiness_1 10

5 1 brown: happiness_2 9

6 1 brown: happiness_3 10

7 2 blonde: Score_1 0.8

8 2 blonde: Score_2 0.9

9 2 blonde: Score_3 0.7

10 2 blonde: happiness 1 2
18 / 19

Missing values in tidyverse
Like base R and others, many tidyverse functions have an argument for

na.rm =.

You can add a drop_na() function to your tidyverse chunk. This function is

part of tidyr and it will get rid of any rows that contain missing values. It's the

equivalent of na.omit()

Do everything in your power to make sure missing values are treated as NA

and not something else. Ex:

999 -- Many measurements can have a value of 999...

" " -- Spaces are treated as a character string, not truly missing!

Remember, the class of your object is based on the least specific object. So

if you have a vector of integers, but one missing value that is " ", the

class of your vector will be a character! Same thing goes for . (periods).

If you have something like 999 and you want to replace that with an NA, either

of the following will work:

data[data == 999] <- NA (for the entire dataset)

data$column[data$column == 999] <- NA (for a single column)

data <- gsub(pattern = 999, replacement = NA, x = data)

(but this will find anything with 999, so be careful!)
19 / 19

