
Dplyr

"The tidyverse is an

opinionated collection of R

packages designed for data

science. All packages share

an underlying design

philosophy, grammar, and

data structures."

What is the tidyverse?

2 / 29

Plan for today
Learn basic syntax for nearly all tidyverse packages

Introduce functions that come from the dplyr package

filter()

select()

mutate()

summarize()

group_by()

3 / 29

About the MIDUS dataset
Variables available in this data file:

Demographic variables: age, sex

Physical health variables: self-rated physical health, heart problems, father

had heart attack, BMI

Mental health variables: self-rated meantal health, self-esteem, life

satisfaction (life overall, work, health, relationship with spouse/partner,

relationship with children), hostility (stress reactivity & agression)

Please load in midus, make sure:

Make sure the variables sex, heart_self, and heart_father are factor()

variables (rather than characters)

Use the same na.omit() function to remove all NA values

4 / 29

Syntax & Piping
All of the tidyverse packages use piping as a way to make code easier to

read.

Think of it kind of like making a cohesive paragraph of code, rather than

scribbling down a bunch of random lines.

The format looks like this:

originalData %>%

 function1(someVariable) %>%

 function2(someVariable) %>%

 function3(someVariable)

5 / 29

Syntax & Piping
originalData %>%

 function1(someVariable) %>%

 function2(someVariable) %>%

 function3(someVariable)

First thing that enters is your original data.frame. The end of the line has this %>%

symbol. This is called a pipe.

6 / 29

Syntax & Piping
originalData %>%

 function1(someVariable) %>%

 function2(someVariable) %>%

 function3(someVariable)

Next up is some function that is performed on a variable. This variable COMES

FROM the originalData data.frame. Another way to think about it is that the

function inherits the data.frame from above. That means you don't need to keep re-

typing originalData.

Again, the end of the line is followed by the %>% pipe operator.

7 / 29

Syntax & Piping
originalData %>%

 function1(someVariable) %>%

 function2(someVariable) %>%

 function3(someVariable)

Same thing for the next function. However, instead of inheriting from

originalData, function 2 will inherit the output of function 1!

Again, the end of the line is followed by the %>% pipe operator.

8 / 29

Syntax & Piping
originalData %>%

 function1(someVariable) %>%

 function2(someVariable) %>%

 function3(someVariable)

Finally, we get to function 3. It will inherit the output of function 2.

Notice that there is no %>% pipe operator at the end of this line. That's because this

"paragraph" of code is now over.

9 / 29

Syntax & Piping
These %>% pipes are used to perform SEQUENTIAL tasks!

You can read the %>% as and then...

Don't use <- inside the piped function. Only at the very beginning if you want

to store the output.

Keep %>% and the end of each line! Not at the beginning.

Shortcut for inserting pipe:

command + shift + m for Mac users

control + shift + m for Windows users

10 / 29

filter() Function
To illustrate how this works, let's start with the filter() function. filter() is

another way to subset your data.frame based on some condition. It is the

tidyverse equivalent of subset().

Let's say we want to make a new data.frame that included only female

participants...

femaleMidus <- midus %>%

 filter(sex == "Female")

ID sex age BMI physical_health_self mental_health_self self_esteem life

10011 Female 52 25.991 5 4 41

10015 Female 53 32.121 3 3 31

10023 Female 78 24.752 2 4 34

10028 Female 63 24.049 5 5 42

10030 Female 56 27.342 4 5 37

10038 Female 57 39.598 3 2 26
11 / 29

Spelling/capitalization etc.
always count
Let's say we want to make a new data.frame that included only female

participants...

femaleMidus <- midus %>%

 filter(sex == "female")

ID sex age BMI physical_health_self mental_health_self self_esteem life_satisfac

12 / 29

Now with multiple logical
operators
Let's say we want to make a new data.frame that included male participants who

have reported having some form of heart problem and are over the age of 50.

oldMenHeart <- midus %>%

 filter(sex == "Male" & heart_self == "Yes" & age > 50)

ID sex age BMI physical_health_self mental_health_self self_esteem life_s

10039 Male 53 31.872 1 4 35

10067 Male 62 29.254 3 3 36

10088 Male 79 29.289 4 4 34

10131 Male 71 24.826 4 4 43

10143 Male 57 25.105 3 5 35

10173 Male 58 28.481 4 5 49
13 / 29

Is tidyverse totally different
from base R?
No! You still have:

objects

assignment of objects

functions

functions that take in arguments

logical operators like == and >

multiple logical operators like & and |

The only thing that's different is the inclusion of %>% and the way you build your

"code paragraphs". But all of the principles that we've learned thus far, still apply to

everything in the tidyverse.

14 / 29

select() function
This is another way to select variables. It can replace indexing, which is helpful

when you are in these tidyverse code chunks (or paragraphs).

This function can take in column indexes, variable names, or both!

first 3 columns only!

firstThree <- midus %>%

 select(1:3)

ID sex age

1 10001 Male 61

2 10002 Male 69

6 10011 Female 52

8 10015 Female 53

10 10018 Male 49

11 10019 Male 51
15 / 29

select() function
BMI, both heart_self and heart_father

otherThree <- midus %>%

 select(BMI, 10:11)

BMI heart_self heart_father

1 26.263 No No

2 24.077 No Yes

6 25.991 No No

8 32.121 No Yes

10 22.499 No No

11 29.987 No No

16 / 29

select() function
To remove a variable, put a - (minus) sign in front of the variable you want to get

rid of

Keep all variables EXCEPT sex & physical_health_self

removal <- midus %>%

 select(-sex, -5)

ID age BMI mental_health_self self_esteem life_satisfaction hostility he

1 10001 61 26.263 4 42 7.750 5.5 N

2 10002 69 24.077 5 34 8.250 6.0 N

6 10011 52 25.991 4 41 7.000 5.5 N

8 10015 53 32.121 3 31 7.375 6.0 N

10 10018 49 22.499 4 41 8.500 6.0 N

11 10019 51 29.987 5 38 7.625 4.5 N

17 / 29

mutate() function
mutate() is kind of tricky. On it's own, will simply add a new variable to the end of

your data.frame based on something.

For example, if we wanted to get the square root of BMI...

sqrtMidus <- midus %>%

 mutate(BMI_sqrt = sqrt(BMI))

head(sqrtMidus)

ID sex age BMI physical_health_self mental_health_self self_estee

1 10001 Male 61 26.263 2 4 4

2 10002 Male 69 24.077 5 5 3

3 10011 Female 52 25.991 5 4 4

4 10015 Female 53 32.121 3 3 3

5 10018 Male 49 22.499 4 4 4

6 10019 Male 51 29.987 4 5 3

life_satisfaction hostility heart_self heart_father BMI_sqrt

1 7.750 5.5 No No 5.124744

2 8.250 6.0 No Yes 4.906832

3 7.000 5.5 No No 5.098137

4 7.375 6.0 No Yes 5.667539
18 / 29

mutate() function
BUT, you can add different endings (suffixes) to it

mutate_at()

mutate_all()

mutate_if()

I find mutate_at() to be the most useful, personally. It is especially nice for

making sure the variables you need to be factors are actually factors!

Note: you can add suffixes _at, _all, and _if to many tidyverse functions! mutate() happens to be

the one where I find this most useful, so I'm using it as an example.

19 / 29

mutate() function
For example, to set up the midus data.frame, you were asked to make sure that

sex, heart_self, and heart_father were all considered factors. Your code

probably looked something like:

midus$sex <- factor(midus$sex)

midus$heart_self <- factor(midus$heart_self)

midus$heart_father <- factor(midus$heart_father)

When instead, it could look something like this:

midus <- midus %>%

 mutate_at(vars(2, 10, 11), list(factor))

vars(2, 10, 11) says "OK, I'm going to mutate some variables. Which

ones?"

list(factor) says, "give me a list of functions you want me to apply to each

of the variables you fed me"

Note: I have found that the help documentation for some of these functions has not updated accordingly. Search the internet and pay attention to your package

version number.
20 / 29

THERE IS NO RIGHT WAY TO
CODE!
Whether you used this...

midus$sex <- factor(midus$sex)

midus$heart_self <- factor(midus$heart_self)

midus$heart_father <- factor(midus$heart_father)

...or this...

midus <- midus %>%

 mutate_at(vars(2, 10, 11), list(factor))

....doesn't matter at all! The only things that count are:

Were you able to do what you wanted to?

Can YOU read the code and know what it's doing?

Can SOMEONE ELSE read the code and know what it's doing?

21 / 29

A filter() & mutate_at()
example
Let's say we filter() so that we only have females in our data.set.

femalesOnly <- midus %>%

 filter(sex == "Female")

In our new data.frame, the variable sex should only have 1 level for "Female". That

is, all the "Male" participants have been removed. So as a factor, there should only

be 1 category or 1 level. Let's check:

levels(femalesOnly$sex)

[1] "Female" "Male"

Uh oh! That's not quite right.

22 / 29

A filter() & mutate_at()
example
Let's tell R to make sex into a factor again (kind of like re-populate the variable).

femalesOnly <- midus %>%

 filter(sex == "Female") %>%

 mutate_at(vars(sex), list(factor))

check the levels again

levels(femalesOnly$sex)

[1] "Female"

Now we got it! You could have first done the filter() function, ended the code

chunk/paragraph, and then typed: femalesOnly$sex <-

factor(femalesOnly$sex). The downside to this is that it's nice to keep all your

functions (verbs/actions) in one place, if you can.

23 / 29

summarize() function
This is great for summarizing your data (shocking, I know 😮)

Remember that awfulness for making bar plots? This is how we can do it easily!

midus %>%

 summarize(meanAge = mean(age))

meanAge

1 56.09118

24 / 29

summarize() function
You can go crazy with this!

midus %>%

 summarize(meanAge = mean(age), # mean

 sdAge = sd(age), # standard deviation

 varAge = var(age), # variance

 medianAge = median(age)) # median

meanAge sdAge varAge medianAge

1 56.09118 12.30031 151.2976 55

Fun fact: the person that wrote much of the tidyverse packages is from New Zealand, where

they use British spellings. Therefore, summarise() is the exact same thing as summarize().

Your tab-complete might fill in the British versions!

25 / 29

group_by() function
We can make summarize() even more powerful by adding the group_by()

function.

You will NOT see anything directly change to your data.frame if you were to just

run this factor. However, on the back end (behind the scenes), it tells R to do

something for each level of a categorical variable.

If we want the mean age of those with and without heart problems:

midus %>%

 group_by(heart_self) %>%

 summarize(meanAge = mean(age))

A tibble: 2 x 2

heart_self meanAge

<fct> <dbl>

1 No 54.6

2 Yes 63.0

26 / 29

group_by() function
We can go crazy with this too!

midus %>%

 group_by(heart_self, sex) %>%

 summarize(meanAge = mean(age),

 sdAge = sd(age),

 meanBMI = mean(BMI),

 sdBMI = sd(BMI))

A tibble: 4 x 6

Groups: heart_self [2]

heart_self sex meanAge sdAge meanBMI sdBMI

<fct> <fct> <dbl> <dbl> <dbl> <dbl>

1 No Female 54.9 12.3 27.5 6.42

2 No Male 54.3 11.5 28.2 4.74

3 Yes Female 61.2 11.8 28.0 6.60

4 Yes Male 64.6 11.1 28.9 4.92

27 / 29

Pro Tips
As you can see, the suite of tidyverse packages can be really, really helpful! Some

things to keep in mind:

You can put a non-tidyverse function into one of these code chunks

(paragraphs)

If you do this, you sometimes need to give the function an input

argument. Use the . for this.

Ex: midus %>% na.omit(.)

You can have as many functions in each paragraph as you want. Just

remember that everything is sequential!

If the output of your paragraph isn't what you think it should be, go line by

line until you find the problem. Do NOT include the %>% when you run the

line of code, though! R will wait for you to finish your sentence...

28 / 29

Other useful dplyr functions
recode() is great for recoding variables. I especially like this for when you

have something like 1 and 2 reflecting categorical variables. Recode them into

something more meaningful! This is often nested within a mutate() or

mutate_at() function.

rename() for renaming columns

arrange() will order the rows of a data.frame by some column.

n_distinct() finds the number of unique entries. For example, if you have

"male" and "female", the result of n_distinct() should be 2, even if there are

thousands of rows. Now let's say there's a spelling error in one of these rows

(e.g., "feemale"), now the result of n_distinct() will be 3...that should let

you know there's a problem.

lots & lots of others...

29 / 29

