
Acting On Variables

Plan for today
Actions we perform on our objects

operators

functions

Getting help when we need it

2 / 22

+

-

*

/

^

%%

addition

subtraction

multiplication

division

taking powers

modulus

Operators
An operator is a simple calculation

3 / 22

Order of Operations
Important note: Order of operations matters!

(8-4)/2

[1] 2

8-(4/2)

[1] 6

4 / 22

==

!=

>

>=

<

<=

equality

inequality

greater than

greater than or equal to

less than

less than or equal to

Logical Operators
Test whether a statement is TRUE or FALSE

5 / 22

Logical Operators
Return a value of TRUE or FALSE

empire$gender == "female"

Which Starwars character is more than 150 cm tall?

empire$height > 150

Are any Starwars characters exactly 150cm tall?

empire$height == 150

WARNING: empire$height = 150 will change your data!

6 / 22

Functions
R is not just a calculator. You often want to do something more complex.

To perform more complicated actions, we use functions

functions are commands that describe, manipulate, or analyze objects

Logical operators & functions are the verbs of programming languages

This is why we use R! No one wants to calculate a regression by hand...

7 / 22

Functions have 3 parts
Function name

Each function has one and only one name

The function name is `log`
log(10)

[1] 2.302585

8 / 22

Functions have 3 parts
Arguments

One argument is always specified -- the input; this is the object that the

function acts on.

Other arguments control how the function acts. For example, do you want the

natural log? Or log base 10?

Each function has defaults for it's arguments. You should know where to find

these and how to change them.

The argument here is the input, or `10`
log(10)

[1] 2.302585

9 / 22

Functions have 3 parts
Output

The output of a function can be any of the object types & and of any class or

even a combination of these

Outputs can be a single value, vector, data.frame, matrix, list, or a plot

You can store the output by assigning it to another object!

The output is `2.302`
log(10)

[1] 2.302585

If we want to store `2.302` for later
newObject <- log(10)

Now print out what is contained in `newObject`
newObject

[1] 2.302585

10 / 22

Mathematical functions
Some obvious ones:

sqrt() square root

round() rounding a number

log() logarithm

exp() exponentiation

abs() absolute value

Example:

sqrt(85)

[1] 9.219544

11 / 22

Functions you'll use a lot!
c() - combine or concatenate

length() - find out how long a vector is (this is the same as getting the last

position)

factor() - change a character vector into a factor vector (is there meaning? Ex:

treatment vs. control, male vs. female, session 1 vs. session 2 etc.)

table() - really nice for getting quick counts (ex: how many males and females

are there?)

cbind() and rbind() - add a vector to an existing data.frame. cbind() adds a

new column. rbind() adds a new row

12 / 22

Multiple arguments
Most functions take more than 1 argument (more than just the input object).

Separate these arguments with commas ,

round(x = 5.86921, digits = 3)

[1] 5.869

13 / 22

Arguments have names
Use the argument names!

perfect
round(x = 5.86921, digits = 3)

[1] 5.869

also perfect
round(digits = 3, x = 5.86921)

[1] 5.869

14 / 22

Arguments have names
Use the argument names!

right answer bc right order
round(5.86921, 3)

[1] 5.869

wrong answer bc wrong order
round(3, 5.86921)

[1] 3

15 / 22

Great, but how do I know what
the arguments are for a function?
Two ways:

1. In RStudio, press the tab key to see the names of arguments and descriptions.

(note, this might not work in the online practice assignments, but it should

definitely work when running RStudio locally)

2. Look in the R Documentation

16 / 22

Go to the help tab Or type ?round into the console

Looking at the documentation
for help

17 / 22

Breakdown of help
documentation
Try typing code to look up the R documentation for the correlation function,

which is called cor.

This will be the example we use.

18 / 22

19 / 22

20 / 22

21 / 22

All together
Logical operators evaluate TRUE or FALSE

In data$gender == "female" the == is the logical operator

However, gender == "female" doesn't work! R doesn't know where to look!

Indexing allows you to get a subset of your data

For a 2-dimensional data.frame, data[rows, columns]

If you want all the rows, data[,columns] (& vice versa)

COMBINING THESE is powerful!

data[data$gender == "female",] is correct!

data[gender == "female"] is incorrect! Can you find the 2 reasons why?

Note: we will go through other ways of doing this; but understanding the logic is really, really important!

22 / 22

