
Objects & Indexing

Part 2

Plan for today
Recap of objects & classes

More sophisticated objects

data.frames

briefly mention others (lists, matrices, tibble)

2 / 25

Objects
Objects are the nouns of programming languages

They have names and they store something

single value or text string (character)

vector of objects

data.frames

models

and more

3 / 25

Classes
Objects can be of a different classes. What type of information is stored in the object?

Some of the options are:

Numeric: Decimals (3.141593)

Integer: Natural numbers (0,1,2, etc.)

Character: Text or string characters:

Always inside quotation marks

Factors (or categories)

Logical: True or False:

No quotations

2 possible values: TRUE or FALSE

or T/F...

but NOT True/False/t/f

Missing Value: NA

4 / 25

Data.frames
Another object class is a data.frame. You can think of this as an Excel sheet.

empire is an example of a data.frame. When you view it in R, it looks like this:

5 / 25

Data.frames
Typically, this is what we want our data to look like. In empire, we have 6 column

vectors. But they are NOT stored as 6 separate objects -- they are combined

because they are all related to one another.

Data.frames are 2-dimensional

Rows & columns

Prettier spreadsheet

6 / 25

Data.frames
Every row has 6 pieces of data that are associated with one another...

7 / 25

Data.frames
Every column has 10 observations...

8 / 25

Indexing Data.frames
Data.frames can be indexed just like vectors.

Except: Data.frames have 2 dimensions!

9 / 25

Indexing Data.frames
data.frame[rows, columns]

What should we get if we typed empire[1:6,5]?

10 / 25

Indexing Data.frames
data.frame[rows, columns]

What do we get if we type empire[1:6,5]?

empire[1:6,5]

[1] "Tatooine" "Tatooine" "Naboo" "Tatooine" "Alderaan" "Stewjon"

11 / 25

Indexing Data.frames
If you want all of something, leave it blank.

All the rows of column 2

empire[,2]

[1] 172 167 96 202 150 182 228 180 66 183

All the columns of row 5

empire[5,]

name height mass sex homeworld species

5 Leia Organa 150 49 female Alderaan Human

12 / 25

Finding Your Data
Sometimes it's easy enough to remember the row index or column index that you

want. But often, we forget!

One of the benefits of a data.frame is that you can access a column by using the

column name.

data.frame$column.name

13 / 25

Finding Your Data
empire$height

[1] 172 167 96 202 150 182 228 180 66 183

Note the tab-complete!

14 / 25

Other object types
Matrix

Tibble

List

15 / 25

Matrix
Very similar to data.frame

No column names

No real reason to use matrices

Can convert to data.frame easily

Make a matrix

testMatrix <- matrix(data = 1:12, nrow = 4, ncol = 3)

testMatrix

[,1] [,2] [,3]

[1,] 1 5 9

[2,] 2 6 10

[3,] 3 7 11

[4,] 4 8 12

Try to access "V1"
testMatrix$V1

Error in testMatrix$V1: $ operator is invalid for atomic vectors
16 / 25

Matrix
Convert to data.frame

testDataFrame <- as.data.frame(testMatrix)

testDataFrame

V1 V2 V3

1 1 5 9

2 2 6 10

3 3 7 11

4 4 8 12

Now try to access column 2 using the "V2" heading
testDataFrame$V2

[1] 5 6 7 8

17 / 25

Tibble
Even more similar to a data.frame than matrices are!

It works particularly well with a suite of packages called the tidyverse

If you use class() on a tibble, it might show up as tbl_df

At this point, for our purposes, there is not notable difference between a tibble

and data.frame.

18 / 25

List
Contain elements of different types (e.g., numbers, strings, vectors,

data.frames, matrices, and more)

If you store a statistical model as an object, it will likely be in a list format

Besides dealing with models, we will (for the most part) not be dealing

with lists

But they can be SUPER useful

Ex: You have 2 large data.frames that have the same variables, but data

were collected on different groups (e.g., patients vs. controls). You want to

perform the same actions on both datasets. You can store these as a list,

and run the same analysis on each, rather than copying/pasting code.

19 / 25

Indexing Lists
For the most part, you can index lists the same way you would a vector

(For these examples, let's only look at the first 3 rows of empire)

exampleList <- list("hello", empire[1:3,], c(2:12))

To get the first element (the word "hello")
exampleList[1]

[[1]]

[1] "hello"

20 / 25

Indexing Lists
For the most part, you can index lists the same way you would a vector

(For these examples, let's only look at the first 3 rows of empire)

exampleList <- list("hello", empire[1:3,], c(2:12))

To get the second element (the `empire` data.frame)
exampleList[2]

[[1]]

name height mass sex homeworld species

1 Luke Skywalker 172 77 male Tatooine Human

2 C-3PO 167 75 none Tatooine Droid

3 R2-D2 96 32 none Naboo Droid

21 / 25

Indexing Lists
For the most part, you can index lists the same way you would a vector

(For these examples, let's only look at the first 3 rows of empire)

exampleList <- list("hello", empire[1:3,], c(2:12))

To get the third element (the vector of numbers 2 through 12)
exampleList[3]

[[1]]

[1] 2 3 4 5 6 7 8 9 10 11 12

22 / 25

Indexing Lists
BUT! Lists have the equivalent of an empty book page that says "Chapter 2"

before getting to the actual chapter.

In order to open the chapter, we use double brackets [[]]

Single brackets
exampleList[2]

[[1]]

name height mass sex homeworld species

1 Luke Skywalker 172 77 male Tatooine Human

2 C-3PO 167 75 none Tatooine Droid

3 R2-D2 96 32 none Naboo Droid

Single brackets doesn't get you "in"
exampleList[2]$mass

NULL

23 / 25

Indexing Lists
BUT! Lists have the equivalent of an empty book page that says "Chapter 2"

before getting to the actual chapter.

In order to open the chapter, we use double brackets [[]]

Single brackets
exampleList[2]

[[1]]

name height mass sex homeworld species

1 Luke Skywalker 172 77 male Tatooine Human

2 C-3PO 167 75 none Tatooine Droid

3 R2-D2 96 32 none Naboo Droid

Double brackets
exampleList[[2]]

name height mass sex homeworld species

1 Luke Skywalker 172 77 male Tatooine Human

2 C-3PO 167 75 none Tatooine Droid

3 R2-D2 96 32 none Naboo Droid
24 / 25

Indexing Lists
BUT! Lists have the equivalent of an empty book page that says "Chapter 2"

before getting to the actual chapter.

In order to open the chapter, we use double brackets [[]]

Double brackets
exampleList[[2]]

name height mass sex homeworld species

1 Luke Skywalker 172 77 male Tatooine Human

2 C-3PO 167 75 none Tatooine Droid

3 R2-D2 96 32 none Naboo Droid

Double brackets gets you "in"
exampleList[[2]]$mass

[1] 77 75 32

25 / 25

