
Objects & Classes

Part 1

Plan for today
What is an object?

Assignment

More than 1 thing with vectors

Object classes

2 / 26

What do we want?
We want our data to look something like this...

name height mass sex homeworld species

Luke Skywalker 172 77.0 male Tatooine Human

C-3PO 167 75.0 none Tatooine Droid

R2-D2 96 32.0 none Naboo Droid

Darth Vader 202 136.0 male Tatooine Human

Leia Organa 150 49.0 female Alderaan Human

Obi-Wan Kenobi 182 77.0 male Stewjon Human

Chewbacca 228 112.0 male Kashyyyk Wookiee

Han Solo 180 80.0 male Corellia Human

Yoda 66 17.0 male NA Yoda's species

Boba Fett 183 78.2 male Kamino Human

3 / 26

What do we want?
What R sees...

A tibble: 10 x 6

name height mass sex homeworld species

<chr> <int> <dbl> <chr> <chr> <fct>

1 Luke Skywalker 172 77 male Tatooine Human

2 C-3PO 167 75 none Tatooine Droid

3 R2-D2 96 32 none Naboo Droid

4 Darth Vader 202 136 male Tatooine Human

5 Leia Organa 150 49 female Alderaan Human

6 Obi-Wan Kenobi 182 77 male Stewjon Human

7 Chewbacca 228 112 male Kashyyyk Wookiee

8 Han Solo 180 80 male Corellia Human

9 Yoda 66 17 male <NA> Yoda's species

10 Boba Fett 183 78.2 male Kamino Human

4 / 26

How do we get there?
Objects

A basic concept in (statistical) programming is called an object

An object allows you to store a value or a thing:

5 / 26

An object can be...

6 / 26

An object can be...

7 / 26

An object can be...

8 / 26

An object can be...

9 / 26

Important:
Objects have names

We are going to refer to objects by their names

Since they have names, we can store objects and use them later

10 / 26

Storing data in objects
If you want to use an object later on (you do!), you have to name it.

This is called assignment or assigning a name to an object

In takes the form of:

nameOfMyObject <- objectToStore

11 / 26

What's the point of storing
objects?
Remembering things sucks! Let R hold on to all the stuff you don't want to

remember or write down right away.

Let's do an example with a series of math equations:

How do we solve this?:

1. Solve for , which is . Either remember or write the number down.

2. Plug it in in the second equation, so that you have divided by .

y = 17 ∗ 8

z =
y

3

y 136 136

136 3

12 / 26

Let's do this with R code!
Let's do an example with a series of math equations:

With code:

y <- 17*8 # first, solve for y

z <- y/3 # now, solve for z

We didn't even need to know that 17*8 is 136. We stored the value of 136 as an

object with the name y.

Then, we could tell R to simply use the name y anytime we wanted to refer to the

number 136

y = 17 ∗ 8

z =
y

3

13 / 26

Who cares?
Remembering a single number seems a little ridiculous. But remember, an object

in R can really be anything. Some objects you definitely might want to store for

later:

A data set like empire

A correlation coefficient

The output of a linear regression model

-values and other statistics

The mean of a variable, so you can subtract the mean from every individual's

score

and lots, lots more!

p

14 / 26

If you do not assign a name to an object,
R will not remember it!

Example:

17*8

[1] 136

y/3

Error in eval(expr, envir, enclos): object 'y' not found

The error message object 'y' not found is very common!

R cannot perform the operation because you never told it to remember 17*8

15 / 26

One type of object: Vectors
A group of objects is called a vector

Vectors are ONE-DIMENSIONAL. You can think of this as either a row...

16 / 26

One type of object: Vectors
A group of objects is called a vector

Vectors are ONE-DIMENSIONAL. You can think of this as either a row... ... or a

column

17 / 26

Making Vectors
In your R code, you will type c() in order to create a vector

The c stands for "combine" or "concatenate"

Some examples:

subjectID <- c("Subject 1", "Subject 2", "Subject 3", "Subject 4", "Subj

passedStats <- c(TRUE, FALSE, FALSE, TRUE, TRUE)

favoriteNumbers <- c(7, 3, 6, 10, 100)

countries <- c(0, 3, 10, 1, 8)

[1] "Subject 1" "Subject 2" "Subject 3" "Subject 4" "Subject 5"

[1] TRUE FALSE FALSE TRUE TRUE

[1] 7 3 6 10 100

[1] 0 3 10 1 8

18 / 26

Vectors
Because these items are grouped together, you can do something to them all at

once!

Let's say these 5 people all went on a trip together, and they visited 2 countries. We

can add 2 to the entire vector, rather than each individual number:

countries + 2

[1] 2 5 12 3 10

19 / 26

Basic data classes
Objects can be of a different class. You can think of it more as what type of

information is stored in the object?. Some of the options are:

Numeric: Decimals (3.141593)

Integer: Natural numbers (0,1,2, etc.)

Character: Text or string characters:

Always inside quotation marks

Factors (or categories)

Logical: True or False:

No quotations

2 possible values: TRUE or FALSE

Missing Value: NA

20 / 26

Basic data classes
To check what data class your object is, you can type class().

class(subjectID)

[1] "character"

class(passedStats)

[1] "logical"

class(countries)

[1] "numeric"

class(empire$species)

[1] "factor"

21 / 26

Pro Tip #1: Special Values
RStudio will change the color of the words you type so that as you code, you can

quickly see what you're dealing with.

22 / 26

Pro Tip #1: Special Values
Character objects are red (or green), and use quotation marks:

subjectID <- c("Subject 1", "Subject 2", "Subject 3", "Subject 4", "Subj

Numeric objects are green (or blue) and do NOT use quotation marks:

favoriteNumbers <- c(7, 3, 6, 10, 100)

Exception #1: NA, without quotation marks, is recognized as "missing" by R.

animals <- c("cow", "dog", NA, "chicken")

Exception #2: TRUE and FALSE does not require quotation marks. Must be either

ALL CAPS or just the first letter capitalized (T or F).

variable <- c(T, FALSE, F, TRUE) # this line is correct

variable <- c(t, false, f, true) # this line is incorrect

23 / 26

Back to data classes
When you combine objects, the new object will have the class of the least specific

object. For example:

numbers <- c(5, 6, 7, "eight", 9)

class(numbers)

[1] "character"

All numbers could theoretially be wrapped in quotes and considered text. But

there is no way for the computer to understand that the character string "eight"

actually refers to 8. So the character class is less specific than the numeric class.

24 / 26

Pro Tip #2: Naming objects
An object name can never start with a number, like 3myObject <- 7

You can include underscores _ and periods . in object names, like my_object

<- "hi" or correlation.2 <- .57

RStudio allows for tab-complete. Start typing in an object name, and it should

appear! Once you see it, either hit tab or enter on your keyboard, and it will fill

in the object name for you

This means you should name your objects with clear, meaningful names!

It does not matter how long the name is

Use capitalization to your benefit, like camel case 🐫 myObject or

patientsVsControls

Names should be human & computer readable

25 / 26

Recap
1. Objects are things, with names -- use the names!

2. Single values, or a group of values like vectors

3. The stuff within objects can belong to different data types or data classes

4. A lot of the error messages you'll get will relate to these!

5. Next up will be accessing our objects!

26 / 26

